• Title/Summary/Keyword: Power characterization

Search Result 740, Processing Time 0.029 seconds

Development of Code-Domain Power module for CDMA signal (CDMA 신호의 Code Domain Power 모듈 개발)

  • Lee, Young Kyo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • This paper describes the measurements that provide a characterization of the code-domain channels of a CDMA base station transmitter. One of the measurements, called code-domain power(CDP), provides the distribution of power in the code domain channels. This measurement can be used to verify that the various channels are at expected power levels and to determine when one code channel is leaking energy into the other code channels. We develop module of CDP measurement in the CDMA system.

A Feasibility Study on the Characterization of Incipient Insulator Failure for Distribution Fault Prediction (배전선로 고장예지를 위한 애자의 고장징후 특성에 관한 연구)

  • Shin, Jeong-Hoon;Kim, Tae-Won;Park, Seong-Taek;Kim, Chang-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.245-249
    • /
    • 1997
  • A feasibility study on the characterization of incipient insulator failure for distribution fault prediction is presented. In this study, real distribution data was collected and analyzed to isolate incipient failure signatures or parameters which were expected to show distinct behaviors before and after failure incident. Several signal analysis methods were applied to isolate the parameters and a new strategy of analysis, the event-date concept, was also applied to find a relationship between non-harmonic and high frequency signal activities and imminent insulator failures.

  • PDF

Slider-Bearing Design with Micro-Machined Wavy-Cavity: Parametric Characterization of Thermohydrodynamic-Operation-Scheme

  • Ozalp B. Turker;Ozalp A. Alper
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1590-1606
    • /
    • 2006
  • Slider bearings are widely applied in mechanical systems, where the design needs cover increased load capacity, lowered friction and power consumption and creative designs. This work is governed to perform a parametric characterization, by generating a novel structure on the upper slider surface, which can formally be expressed in micro-machined wavy-form, where the individual and combined influences of various structural design parameters and boundary conditions, on the performance records, are also evaluated. Computations put forward that the contribution of the wave amplitude on power loss values is highly dependent on the level of inlet pressure; higher amplitudes are determined to increase power loss in the lowest inlet pressure case of 1.01, whereas the contrary outcome is determined in the higher inlet pressure cases of 3.01 & 5.01. Designing the slider bearing system, based on optimal load capacity, produced the optimum wave number ranges as 10-45, 7-11 and 5-8 for the pad inclinations of $5^{\circ},\;4^{\circ}$ and $3^{\circ}$ respectively.

The new odd-burr rayleigh distribution for wind speed characterization

  • Arik, Ibrahim;Kantar, Yeliz M.;Usta, Ilhan
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.369-380
    • /
    • 2019
  • Statistical distributions are very useful in describing wind speed characteristics and in predicting wind power potential of a specified region. Although the Weibull distribution is the most popular one in wind energy literature, it does not seem to be able to perfectly fit all the investigated wind speed data in nature. Thus, many studies are still being conducted to find flexible distribution for modelling wind speed data. In this study, we propose a new Odd-Burr Rayleigh distribution for wind speed characterization. The Odd-Burr Rayleigh distribution with two shape parameters is flexible enough to model different shapes of wind speed data and thus it can be an alternative wind speed distribution for the assessment of wind energy potential. Therefore, suitability of the Odd-Burr Rayleigh distribution is investigated on real wind speed data taken from different regions in the South Africa. Numerical results of the conducted analysis confirm that the new Odd-Burr Rayleigh distribution is suitable for modelling most of the considered real wind speed cases and it also can be used for predicting wind power.

Fabrication and characterization of fault current limiting devices made of stabilizer-free coated conductors (Stabilizer-free 초전도 선재를 이용한 한류 소자 제작 및 특성 시험)

  • Yim, Seong-Woo;Park, Chung-Ryul;Yu, Seong-Duck;Kim, Hye-Rim;Hyun, Ok-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.371-371
    • /
    • 2009
  • For the application of superconducting wires to fault current limiting devices, it is required that they have a high rated voltage when a fault occurs. Stabilizer-free coated conductors, particularly, shows a good performance for the high rated voltage, which is beyond 0.6 V/cm. In this study, using the stabilizer-free coated conductors, we made fault current limiting devices and examined their characteristics. Fault current limiting devices were fabricated with a shape of the cylinder of a mono-filar coil winding. Stabilizer-free coated conductors were wound along the mono-filar coil line and the terminal parts between the wire and metal were soldered using In solder. Two kinds of devices were fabricated by a different method in the terminal joint, one was made by a soldering and the other was made by a soldering-free joint. Critical currents and resistance at the joint parts were measured. In addition, long-time current flowing tests were also carried out for the characterization of the fault current limiting devices.

  • PDF

ON CHARACTERIZATIONS OF THE POWER DISTRIBUTION VIA THE IDENTICAL HAZARD RATE OF LOWER RECORD VALUES

  • Lee, Min-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.337-340
    • /
    • 2017
  • In this article, we present characterizations of the power distribution via the identical hazard rate of lower record values that $X_n$ has the power distribution if and only if for some fixed n, $n{\geq}1$, the hazard rate $h_W$ of $W=X_{L(n+1)}/X_{L(n)}$ is the same as the hazard rate h of $X_n$ or the hazard rate $h_V$ of $V=X_{L(n+2)}/X_{L(n+1)}$.

Characterization of the Soldering Interface in Power Modules by Peel Strength Measurement (벗김강도 측정법에 의한 파워 모듈의 솔더접합 특성 평가)

  • Kim, Nam-Kyun;Lee, Hee-Heung;Bahng, Wook;Seo, Kil-Soo;Kim, Eun-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1142-1149
    • /
    • 2003
  • The strength and characteristics of the soldering interface of the power semiconductor chip in a power module has been firstly surveyed by the peel strength measurement method. A power module is combined with several power chips which generally has 30∼400$\textrm{mm}^2$ chip area to allow several tens or bigger amps in current rating, so that the traditional methods for interface characterization like shear test could not be applied to high power module. In this study power diode modules were fabricated by using lead-tin solder with 10${\times}$10$\textrm{mm}^2$ or 7${\times}$7$\textrm{mm}^2$ soldering interface. The peel strengths of soldered interfaces were measured and then the microscopic investigation on the fractured surfaces were followed. The peel test indicated that the crack propagated either through the bulk of the soft lead-tin solder which has 55-60 kgf/cm peel strength or along the interface between the solder and the plated nickel layer which has much lower 22 kgf/cm strength. This study showed that the peel test would be a useful method to quantify the solderability as well as to recognize which is the worst interface or the softest material in a power module with a large soldering area.

Modeling and Characterization of Low Voltage Access Network for Narrowband Powerline Communications

  • Masood, Bilal;Haider, Arsalan;Baig, Sobia
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.443-450
    • /
    • 2017
  • Nowadays, Power Line Communication (PLC) is gaining high attention from industry and electric supply companies for the services like demand response, demand side management and Advanced Metering Infrastructure (AMI). The reliable services to consumers using PLC can be provided by utilizing an efficient PLC channel for which sophisticated channel modeling is very important. This paper presents characterization of a Low Voltage (LV) access network for Narrowband Power Line Communications (NB-PLC) using transmission line (TL) theory and a Simulink model. The TL theory analysis not only includes the constant parameters but frequency selectivity is also introduced in these parameters such as resistance, conductance and impedances. However, the proposed Simulink channel model offers an analysis and characterization of capacitive coupler, network impedance and channel transfer function for NB-PLC. Analysis of analytical and simulated results shows a close agreement of the channel transfer function. In the absence of a standardized NBPLC channel model, this research work can prove significant in improving the efficiency and accuracy of NB-PLC communication transceivers for Smart Grid communications.