• 제목/요약/키워드: Power characteristics

검색결과 16,251건 처리시간 0.043초

Al/Air 연료전지의 출력특성에 미치는 KOH 전해질과 H2O2 감극제의 영향 (Effect of KOH Electrolyte and H2O2 Depolarizer on the Power Characteristics of Al/Air Fuel Cells)

  • 김용혁
    • 전기학회논문지P
    • /
    • 제64권4호
    • /
    • pp.303-307
    • /
    • 2015
  • The effects of additive such as $H_2O_2$ in KOH electrolyte solution for the Aluminum/Air fuel cell were investigated with regard to electric power characteristics. The power generated by a Al/Air fuel cell was controlled by the KOH electrolyte solution and $H_2O_2$ depolarizer. Higher cell power was achieved when higher KOH electrolyte concentration and higher $H_2O_2$ depolarizer amount. The maximum power was increased by the increase amount $H_2O_2$ depolarizer, it was found that $H_2O_2$ depolarizer inhibits the generation of hydrogen and the polarization effect was reduced as a result. Internal resistance analysis was employed to elucidate the maximum power variation. Higher internal resistance created internal potential differences that drive current dissipating energy. In order to improve the output characteristics of the Al/Air fuel cell, it is thought to be desirable to increase the KOH electrolyte concentration and increase the $H_2O_2$ addition amounts.

원자력발전소 주제어실의 공간특성에 따른 디자인 요소에 관한 연구 (A Study on Design Elements of Main Control Room in Nuclear Power Plants by Analyzing Space Characteristics)

  • 이승훈;이태연
    • 한국실내디자인학회논문집
    • /
    • 제19권6호
    • /
    • pp.249-256
    • /
    • 2010
  • For guaranteeing for security of nuclear power plant, ergonomic factors have been applied to design of main control room, core area for management and control of nuclear power plant, but design elements for performance of operators have been ignored. As the behaviors of operators are important for security of nuclear power plant, space design which makes them pleasant psychologically and makes them maintain attention on security equipments ceaselessly is required. Therefore, the purpose of this study is to analyze space characteristics of main control rooms according to regulations of nuclear power plant and general guidelines of space design, and to offer basic data for designing of main control room which makes operators pleasant psychologically and physically. At first, theoretical issues related with design of main control room are reviewed and several premises of space are developed by abstracting design elements from common space and regulations of nuclear power plant and, then integrating each design elements interactively. In short, the improvement of system environment based on human-machine interface space has brought about perceptual, cognitive, and spatial changes and has realized next generation of main control rooms. And, differences and similarities between ordinary space and main control room, which ergonomic sizes and regulations are applied and is VDT environment based on LDP, are discussed in relation to 13 design elements and 17 space premise.

고주파 공진형 인버터식 X-선 장치의 단시간 출력특성 비교 연구 (A Study on the Output Characteristics Comparison of High Frequency Resonant Inverter Type X-ray Generators in Short Exposure Time)

  • 정수복;이성길;임홍우;백형래
    • 전력전자학회논문지
    • /
    • 제4권1호
    • /
    • pp.66-72
    • /
    • 1999
  • 본 논문은 고주파 공진형 PWM 인버터식 X-선 장치의 인버터에 단상과 3상 전파정류방식 및 PSU 전원을 연결시켰을 때 나타나는 단시간 출력특성에 대해 분석하였다. X-선의 선질은 X-선관에 입력되는 DC 전압 파형에 의존한다. DC 출력전압 파형은 DC 전압전원의 고조파 왜곡에 의해 영향을 받는다. 이러한 관전압 파형의 왜곡은 X-선 출력의 직선성, 재현성 및 출력선질을 저하시킨다. 따라서 본 논문에서는 DC 출력전압 파형과 세 가지 형식의 DC 입력전원 형식에 따른 출력선량을 비교하였고 이에 따른 실험결과를 검토하였다.

Analysis on operation characteristics and power burdens of the double quench trigger type SFCLs

  • Lim, Seung-Taek;Lim, Sung-Hun;Han, Tae-Hee
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권2호
    • /
    • pp.33-37
    • /
    • 2017
  • To protect the power systems from fault current, the rated protective equipment should be installed. However growth of power system scale and concentration of loads caused the large fault current in power transmission system and distribution system. The capacities of installed protective equipment have been exceeded the due to increase of fault current. This increase is not temporary phenomenon but will be steadily as long as the industry develops. The power system operator need a counter-measurement for safety, so superconducting fault current limiter (SFCL) has been received attention as effective solutions to reduce the fault current. For the above reasons various type SFCLs have been studied recently. In this paper, operation characteristics and power burden of trigger type SFCL is studied. The trigger type SFCL has been used for real system research in many countries. Another trigger type SFCL (double quench trigger type SFCL) is also studied. For this paper, short circuit test is performed.

전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성 (The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization)

  • 이병관;맹주철;이종규;윤중락
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

정유압 기계식 변속장치의 동력전달특성 (Power Transmission Characteristics of a Hydro-Mechanical Transmission)

  • 성덕환;김형의;이근호;김현수
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1854-1862
    • /
    • 2001
  • In this paper, power flow characteristics of a hydromechanical transmission(HMT) are investigated using network analysis. The HMT used in this study consist of a hydrostatic unit(HSU), planetary gear sets, clutches and brakes providing forward 4 speeds and backward 2 speeds. Since the HMT power flows showing a closed loop and the HSU efficiency varies depending on the pressure and speed, a systematic approach is required to analyze the power transmission characteristics of the HMT. In order to analyze the closed loop power flow and the HSU power loss which changes depending on the pressure and speed, network model is constructed fur each speed range. In addition, an algorithm is proposed to calculate an accurate HSU loss corresponding to the experimental results. It is found from the network analysis that the torque and speed of each transmission element including the HSU can be obtained as well as direction of the power flow by the proposed algorithm. It is expected that the network analysis can be used in the design of relatively complicated transmission system such as HMT.

A Novel Digital Over Current Relay with Variable Time-Current Characteristics for Protective Coordination

  • Park, M. S.;P. S. Cho;Lee, S. J.;S. H. Hyun;Kim, K. H.
    • KIEE International Transactions on Power Engineering
    • /
    • 제2A권3호
    • /
    • pp.83-88
    • /
    • 2002
  • An over current relay(OCR), one of the most frequently used protective devices, has time-current characteristics (TCC) to control its trip time according to the current level. It is because an appropriate operating time interval is necessary for coordination with other protective devices. A set of TCC curves of an OCR is, in general, given by the supplier from which a curve is selected by the operator. Therefore, in many cases, it is impossible to consider the operation condition of the given power system exactly. A novel concept of an OCR is suggested in this paper. The proposed OCR has an internal correction module so that it may produce the most adequate TCC curve according to the given protective information for coordination with other devices. With the generated TCC curve, a variety of operation and coordination conditions can be taken into consideration in an effective manner. The suggested OCR is applied to a simple test power system to show very promising results from a coordination point of view.

Field-Measurement-Based Received Power Analysis for Directional Beamforming Millimeter-Wave Systems: Effects of Beamwidth and Beam Misalignment

  • Lee, Juyul;Kim, Myung-Don;Park, Jae-Joon;Chong, Young Jun
    • ETRI Journal
    • /
    • 제40권1호
    • /
    • pp.26-38
    • /
    • 2018
  • To overcome considerable path loss in millimeter-wave propagation, high-gain directional beamforming is considered to be a key enabling technology for outdoor 5G mobile networks. Associated with beamforming, this paper investigates propagation power loss characteristics in two aspects. The first is beamwidth effects. Owing to the multipath receiving nature of mobile environments, it is expected that a narrower beamwidth antenna will capture fewer multipath signals, while increasing directivity gain. If we normalize the directivity gain, this narrow-beamwidth reception incurs an additional power loss compared to omnidirectional-antenna power reception. With measurement data collected in an urban area at 28 GHz and 38 GHz, we illustrate the amount of these additional propagation losses as a function of the half-power beamwidth. Secondly, we investigate power losses due to steering beam misalignment, as well as the measurement data. The results show that a small angle misalignment can cause a large power loss. Considering that most standard documents provide omnidirectional antenna path loss characteristics, these results are expected to contribute to mmWave mobile system designs.

정유압기계식 변속장치의 동력특성해석 (Power Characteristics Analysis of Hydro-Mechanical Transmission)

  • 성덕환;이근호;김현수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.519-524
    • /
    • 2001
  • In this paper, power flow characteristics of a hydromechanical transmission(HMT) are investigated using network analysis. The HMT used in this study consist of a hydrostatic unit(HSU), planetary gear sets, clutches and brakes providing forward 4 speeds and backward 2 speeds. Since the HMT power flows showing a closed loop and the HSU efficiency varies depending on the pressure and speed, a systematic approach is required to analyze the power transmission characteristics of the HMT. In order to analyze the closed loop power flow and the HSU power loss which changes depending on the pressure and speed, network model is constructed for each speed range. In addition, an algorithm is proposed to calculate an accurate HSU loss corresponding to the experimental results. It is found from the network analysis that the torque and speed of each transmission element including the HSU can be obtained as well as direction of the power flow by the proposed algorithm. It is expected that the network analysis can be used in the design of relatively complicated transmission system such as HMT.

  • PDF

태양광 시스템에 적용한 배터리 커패시터의 전기적 특성에 관한 연구 (A Study on the Electrical Characteristics of Battery Capacitor Applied to Photovoltaic Power System)

  • 맹주철;윤중락
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1740-1744
    • /
    • 2017
  • This paper describes the preparation and characteristics of a battery capacitor and module for solar power system. A cylindrical 30,000F battery capacitor ($60{\times}138mm$) was assembled by using the $LTO(Li_4Ti_5O_{12})$ electrode as an anode and $NMC(LiNiMnCoO_2)-LCO(LiCoO_2)$ as a cathode. The battery capacitor has reduced energy density and power density under high CC(constant current) and CP(constant power) conditions. Battery capacitor module (16V, 11Ah) was fabricated using an asymmetric hybrid capacitor with a capacitance of 30,000F. In order to determine the characteristics of the battery capacitor Module for solar power system, battery capacitor cells were connected in series with active balancing circuit. As a result of measuring the 100w LED lamp, it was discharged at the voltage of 15V~10V, and the compensation time at discharge was measured to be about 4979s. Experimental results show that it can be applied to applications related to solar power system by applying battery capacitor module.