• Title/Summary/Keyword: Power characteristics

Search Result 16,367, Processing Time 0.054 seconds

Mixed Mode Control of Constant Power and Constant Current for Resistance Spot Welder using Dynamic Resistance Characteristics (동저항 특성을 이용한 저항 스폿 용접기의 정전력과 정전류의 혼합모드 제어)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1571-1577
    • /
    • 2015
  • A new mixed mode control of constant power and constant current for resistance spot welding inverter is proposed to improve the weld quality. The conventional control scheme adopts constant current or constant power control mode, however, it is not easy to guarantee the high weld quality because of the nonlinear resistance characteristics of the welding point. The proposed method utilizes the nonlinear characteristics by measuring the dynamic resistance in real time. Therefore, it is possible for the welder to be controlled adaptively depending on the welding state. Experimental results show that the proposed control scheme improves the weld quality by 6.8 times compared with the conventional constant current mode control.

A Study On The Characteristics Of The Medium Voltage Power Distribution Line Channel By Wideband Channel Impulse Response Measurement Using PN Sequence (PN 시퀀스 방식의 광대역 임펄스 응답 측정을 통한 고압 배전선로 채널 특성 연구)

  • Oh Hui-Myoung;Choi Sung-Soo;Lee Jae-Jo;Kim Kwan-Ho;Whang Keum-Chan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.56-60
    • /
    • 2005
  • In the power-line communication(PLC) systems, the power line is a wired medium. However, the power line channel has the multi-path fading characteristics like the wireless channel in the wireless communication systems because it has the signal reflection and divergence by the impedance mismatching between many branch lines and loads. So the analysis of the multi-path characteristics is very important, and it has been doing by the several measurement methods for the impulse response between the transmitter and the receiver. PN sequence method has originally been used as a wideband impulse response measurement mettled for wireless channel, but it is recently being applied to not only the wireless channel but also the wired channel like the power line channel. This method is more useful and effective for the long distance communication channel like the medium voltage power distribution line with the multi-paths[1]. In this thesis, we have measured impulse response for the medium voltage power distribution line channel by the wideband measurement method using PN sequence, analytically studied the measured data and presented the results.

Comparative Analysis on Current Limiting Characteristics of Hybrid Superconducting Fault Current Limiters (SFCLs) with First Half Cycle Limiting and Non-Limiting Operations

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.659-663
    • /
    • 2012
  • The application of large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer's impedance caused the short-circuit current of the power distribution system to be increase thus, the higher short-circuit current exceeded the cut-off ratings of the protective devices such as circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. In spite of excellent current limiting performances of the SFCL, on the other hand, the efforts to apply the SFCL into power system has been delayed due to both the limited spaces for the SFCL's installation and its long recovery time after the fault removal. In order to solve these problems, a hybrid SFCL, which can perform either first half cycle limiting of first half cycle non-limiting operation, has been developed by corporation of LSIS (LS Industrial System) and KEPCO (Korea Electric Power Corporation). In this paper, we tried to requirements hybrid SFCL by PSCAD/EMTDC. Simulation results of our analysis of the hybrid SFCL is that its accompanied the characteristics both the limit the fault current and quick recovery caused by the less impact from superconductor.

Study on the Stability Evaluation of the High-Tc Superconducting Power Cable (고온초전도 전력케이블의 안정도 평가를 위한 교류손실에 관한 연구)

  • Bae, J.H.;Choi, S.J.;Lee, S.J.;Cho, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1236-1240
    • /
    • 2007
  • In order to evaluate if the high-Tc superconducting(HTS) power cable is operating stably, the characteristics of the HTS power cable should be found out. The properties of HTS tapes by measuring the voltage with respect to the current can be archived. But, the HTS power cable is different from the case of HTS tapes. This method is invalid because of the electromagnetic fields caused by other HTS tapes. In this paper, the stability evaluation of the HTS cable was performed by the following procedure. First, the voltage-current characteristics of HTS tape were measured and the electromagnetic field distributions of the HTS power cable with the external magnetic field were analyzed. Second, the losses of the HTS power cable were calculated using the result of the measurement and the analysis. Finally, the stable operation of the HTS power cable was evaluated on the basis of the losses of the superconducting cable.

An Electric-Field Coupled Power Transfer System with a Double-sided LC Network

  • Xie, Shi-Yun;Su, Yu-Gang;Zhou, Wei;Zhao, Yu-Ming;Dai, Xin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.289-299
    • /
    • 2018
  • Electric-field coupled power transfer (ECPT) systems employ a high frequency electric field as an energy medium to transfer power wirelessly. Existing ECPT systems have made great progress in terms of increasing the transfer distance. However, the topologies of these systems are complex, and the transfer characteristics are very sensitive to variations in the circuit parameters. This paper proposes an ECPT system with a double-sided LC network, which employs a parallel LC network on the primary side and a series LC network on the secondary side. With the same transfer distance and output power, the proposed system is simpler and less sensitive than existing systems. The expression of the optimal driving voltage for the coupling structure and the characteristics of the LC networks are also analyzed, including the transfer efficiency, parameter sensitivity and total harmonic distortion. Then, a design method for the system parameters is provided according to these characteristics. Simulations and experiments have been carried out to verify the system properties and the design method.

Impact Power Characteristics by Walking for Adults (성인 보행에 따른 충격력 특성에 관한 연구)

  • Kim, Kyoung-Woo;Choi, Hyoun-Jung;Choi, Gyoung-Seok;Kang, Jae-Sik;Yang, Kwan-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.800-803
    • /
    • 2005
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. Running and jumping impact sound by child and walking by adult are one of the most irritating noises in an apartment buildings. It's necessary to know that the impact power characteristics of real impact source in an apartment buildings. This study aims to investigate the impact power and impact time of normal walking and fast walking for 62 adults. It is shown that when the weight of the person increase, the maximum impact power increases. The impact power waveform for the adults walking varies for subjects walking types. The normal walking impact power lower than that of fast walking and impact time is higher than that of fast walking. The range of the impact power generated by adults walking is less than 1000 N.

  • PDF

A Study A on Internal Loss Characteristics and Efficiency Improvement of Low Power Flyback Converter Using WBG Switch (WBG 스위치를 적용한 소용량 플라이백 컨버터의 내부손실 특성과 효율 개선에 관한 연구)

  • Ahn, Tae Young;Yoo, Jeong Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • In this paper, efficiency and loss characteristics of GaN FET were reported by applying it into the QR flyback converter. In particular, for the comparison of efficiency characteristics, QR flyback converter experimental circuits with Si FET and with GaN FET were separately produced in 12W class. As a result of the experiment, the experimental circuit of the QR flyback converter using GaN FET reached a high efficiency of 90% or more when the load power was 2W or more, and the maximum efficiency was observed to be about 92%, and the maximum loss power was about 1.1W. Meanwhile, the efficiency of the experimental circuit with Si FET increased as the input voltage increased, and the maximum efficiency was observed to be about 82% when the load power was 9W or higher, and the maximum loss power was about 2.8W. From the results, it is estimated that that in the case of the experimental circuit applying the GaN FET switch, the power conversion efficiency was improved as the switching loss and conduction loss due to on-resistance were reduced, and the internal loss due to the synchronous rectifier was minimized. Consequently, it is concluded that the GaN FET is suitable for under 20W class power supply unit as a high efficiency power switch.

Development of Analysis Model for Characteristics Study of Fluid Power Systems in Injection Molding Machine (사출성형기 유압시스템의 특성 검토를 위한 해석 모델 개발)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • Injection molding machine is the assembly of many kinds of mechanical and fluid power part and electro-electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of injection molding machine are modelled and analyzed using a commercial program AMESim. The analysis model which is detailed about the parts applied a publishing catalog data. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like displacement, pressure, flow rates at each node and so on. Total fluid power circuit model is also made and analyzed. The results made by analysis will be used design of fluid power circuit of injection molding machine.

Grid-friendly Characteristics Analysis and Implementation of a Single-phase Voltage-controlled Inverter

  • Zhang, Shuaitao;Zhao, Jinbin;Chen, Yang;He, Chaojie
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1278-1287
    • /
    • 2017
  • Inverters are widely used in distributed power generation and other applications. However, their lack of inertia and variable impedance may cause system instability and power transfer inaccuracy. This paper proposes a control scheme for a single phase voltage-controlled inverter with some grid-friendly characteristics. The proposed control algorithm enables the inverter to function as a voltage source with an inner output impedance in both the islanded and grid-connected modes. Virtual inertia and rotor equations are embedded in the PLL part. Thus, the frequency stability can remain. The inner output impedance can be adjusted freely, which helps to accurately decouple and transmit the output active and reactive power. The proposed inverter operates like a traditional synchronous generator. Simulations and experiments are designed and carried out to verify the proposed control strategy.

A Positioning Method of Distributed Power System by Considering Characteristics of Droop Control in a DC Microgrid

  • Ko, Byoung-Sun;Lee, Gi-Young;Kim, Sang-Il;Kim, Rae-Young;Cho, Jin-Tae;Kim, Ju-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.620-630
    • /
    • 2018
  • In this paper, a positioning method of distributed power system is proposed to minimize the average voltage variation of a DC microgrid through voltage sensitivity analysis. The voltage sensitivity under a droop control depends on the position of the distributed power system. In order to acquire a precise voltage sensitivity under a droop control, we analyzed the power flow by introducing a droop bus with the considerations of the droop characteristics. The results of the positioning method are verified through PSCAD/EMTDC simulation.