• 제목/요약/키워드: Power and Rate Allocation

Search Result 247, Processing Time 0.025 seconds

Performance Analysis of Interference-Mitigated Opportunistic Relay System (간섭이 완화된 기회주의적인 중계기 시스템의 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, we proposed a method using the user mobile device to overcome the interference constraint without building a cooperative communication system. In addition, in order to mitigate interference, we apply the user mobile device selection method, and then exploit power allocation scheme in the user mobile device. The proposed protocol is analyzed in the Rayleigh fading environment, and the performance system is evaluated in terms of the bit error rate and the outage probability. The simulation results showed that when the proposed transmission algorithm is applied, the interference can be mitigated. Further, network overload problems can be solved in the weak channel interference. Therefore, we can increase the network capacity without additional relay.

Design and Implementation of a Dual-Channel ZigBee Router (이중 채널 ZigBee 라우터의 설계 및 구현)

  • Kim, Brian
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.416-421
    • /
    • 2007
  • ZigBee is becoming a promising communication protocol for wireless sensor networks based on low-power consumption. In case of a ZigBee network requesting continuous transmission of sensed data, the required bandwidth can be overwhelm the maximum transmission rate of 150Kbps. However, the ZigBee router which delivers data from source node to destination node can transmit data at most in a half of maximum rate because the router can not send and receive the data simultaneously. In this paper, we propose and implement a dual-channel router which can send and receive data simultaneously. Also, we propose a centralized channel allocation algorithm to allocate different channels to each module. The experiment result by the proposed dual-channel router shows a maximum throughput of 150Kbps as large as twice of normal single-channel router.

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

A Near Optimal Linear Preceding for Multiuser MIMO Throughput Maximization (다중 안테나 다중 사용자 환경에서 최대 전송율에 근접하는 선형 precoding 기법)

  • Jang, Seung-Hun;Yang, Jang-Hoon;Jang, Kyu-Hwan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.414-423
    • /
    • 2009
  • This paper considers a linear precoding scheme that achieves near optimal sum rate. While the minimum mean square error (MMSE) precoding provides the better MSE performance at all signal-to-noise ratio (SNR) than the zero forcing (ZF) precoding, its sum rate shows superior performance to ZF precoding at low SNR but inferior performance to ZF precoding at high SNR, From this observation, we first propose a near optimal linear precoding scheme in terms of sum rate. The resulting precoding scheme regularizes ZF precoding to maximize the sum rate, resulting in better sum rate performance than both ZF precoding and MMSE precoding at all SNR ranges. To find regularization parameters, we propose a simple algorithm such that locally maximal sum rate is achieved. As a low complexity alternative, we also propose a simple power re-allocation scheme in the conventional regularized channel inversion scheme. Finally, the proposed scheme is tested under the presence of channel estimation error. By simulation, we show that the proposed scheme can maintain the performance gain in the presence of channel estimation error and is robust to the channel estimation error.

Analyses on Achievable Data Rate for Single-User Decoding(SUD) Receiver: with Application to CIS NOMA Strong Channel User (SUD 수신기의 획득가능한 전송률 분석: 상관 정보원 비직교 다중 접속의 강 채널 사용자에 대한 응용)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1003-1010
    • /
    • 2020
  • This paper investigates the achievable data rate for the single-user decoding(SUD) receiver, which does not perform successive interference cancellation(SIC), in contrast to the conventional SIC non-orthogonal multiple access(NOMA) scheme. First, the closed-form expression for the achievable data rate of SUD NOMA with correlated information sources(CIS) is derived, for the stronger channel user. Then it is shown that for the stronger channel user, the achievable data rate of SUD NOMA with independent information sources(IIS) is generally inferior to that of conventional SIC NOMA with IIS. However, for especially highly CIS, we show that the achievable data rate of SUD NOMA is greatly superior to that of conventional SIC NOMA. In addition, to verify the impact of CIS on the achievable data rate of SUD, the extensive comparisons of the achievable data rates for the SUD receiver and the SIC receiver are compared for various correlation coefficients.

Analysis of Achievable Data Rate under BPSK Modulation: CIS NOMA Perspective (BPSK 변조의 최대 전송률 분석: 상관 정보원의 비직교 다중 접속 관점에서)

  • Chung, Kyu-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.995-1002
    • /
    • 2020
  • This paper investigates the achievable data rate for non-orthogonal multiple access(NOMA) with correlated information sources(CIS), under the binary phase shift keying(BPSK) modulation, in contrast to most of the existing NOMA designs using continuous Gaussian input modulations. First, the closed-form expression for the achievable data rate of NOMA with CIS and BPSK is derived, for both users. Then it is shown by numerical results that for the stronger channel user, the achievable data rate of CIS reduces, compared with that of independent information sources( IIS). We also demonstrate that for the weaker channel user, the achievable data rate of CIS increases, compared with that of IIS. In addition, the intensive analyses of the probability density function(PDF) of the observation and the inter-user interferennce(IUI) are provided to verify our theoretical results.

A Node-Grouping MAC Protocol in Delay-Tolerant Underwater Acoustic Sensor Networks (지연 허용적인 수중 센서 네트워크에서 노드 그룹핑을 이용한 매체 접속 제어 프로토콜)

  • Cheon, Jin-Yong;Son, Kweon;Jang, Youn-Seon;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1200-1209
    • /
    • 2011
  • In this paper, we propose a novel energy efficient MAC protocol which is based on orthogonal frequency division multiple access (OFDMA) and exploits the physical characteristic that propagation loss of acoustic wave depends on the distance. In the proposed scheme, sensor nodes are grouped according to the distance to sink node. Then, each group uses a different frequency band. The proposed scheme not only enables all sensor nodes to maintain the signal-to-noise ratio above a certain required level (Accepted Minimum SNR, AMS), but also reduces overall transmission power consumption. In addition, the dynamic sub-channel allocation is employed in order to improve data transmission rate. Simulations show that proposed MAC protocol has better performance in a delay-tolerant underwater acoustic sensor networks.

On Design and Performance Analysis of Asymmetric 2PAM: 5G Network NOMA Perspective (비대칭 2PAM의 설계와 성능 분석: 5G 네트워크의 비직교 다중 접속 관점에서)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.24-31
    • /
    • 2020
  • In non-orthogonal multiple access (NOMA), the degraded performance of the weaker channel gain user is a problem. In this paper, we propose the asymmetric binary pulse amplitude modulation (2PAM), to improve the bit-error rate (BER) performance of the weaker channel user in NOMA with the tolerable BER loss of the stronger channel user. First, we design the asymmetric 2PAM, calculate the total allocated power, and derive the closed-form expression for the BER of the proposed scheme. Then it is shown that the BER of the weaker channel user improves, with the small BER loss of the stronger channel user. The superiority of the proposed scheme is also validated by demonstating that the signal-to-noise ratio (SNR) gain of the weaker channel user is about 10 dB, with the SNR loss of 3 dB of the stronger channel user. In result, the asymmetric 2PAM could be considered in NOMA of 5G systems. As a direction of the future research, it would be meaningful to analyze the achievable data rate for the propsed scheme.

Unlicensed Band Traffic and Fairness Maximization Approach Based on Rate-Splitting Multiple Access (전송률 분할 다중 접속 기술을 활용한 비면허 대역의 트래픽과 공정성 최대화 기법)

  • Jeon Zang Woo;Kim Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.10
    • /
    • pp.299-308
    • /
    • 2023
  • As the spectrum shortage problem has accelerated by the emergence of various services, New Radio-Unlicensed (NR-U) has appeared, allowing users who communicated in licensed bands to communicate in unlicensed bands. However, NR-U network users reduce the performance of Wi-Fi network users who communicate in the same unlicensed band. In this paper, we aim to simultaneously maximize the fairness and throughput of the unlicensed band, where the NR-U network users and the WiFi network users coexist. First, we propose an optimal power allocation scheme based on Monte Carlo Policy Gradient of reinforcement learning to maximize the sum of rates of NR-U networks utilizing rate-splitting multiple access in unlicensed bands. Then, we propose a channel occupancy time division algorithm based on sequential Raiffa bargaining solution of game theory that can simultaneously maximize system throughput and fairness for the coexistence of NR-U and WiFi networks in the same unlicensed band. Simulation results show that the rate splitting multiple access shows better performance than the conventional multiple access technology by comparing the sum-rate when the result value is finally converged under the same transmission power. In addition, we compare the data transfer amount and fairness of NR-U network users, WiFi network users, and total system, and prove that the channel occupancy time division algorithm based on sequential Raiffa bargaining solution of this paper satisfies throughput and fairness at the same time than other algorithms.

Design of Cooperative M-1-1 Protocol Using OFDM to Increase Spectrum Utilization in WSN (무선 센서 네트워크의 주파수 사용 효율성 향상을 위한 OFDM을 사용한 협력적 M-1-1 프로토콜 설계)

  • Hwang, Yun-Kyeong;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.766-773
    • /
    • 2007
  • Conventional wireless sensor network(WSN) has limited power and bandwidth. In order to develop multimedia sensor technology, high data rate communication systems are required. Cooperative communication system can help to decrease power consumption through spatial diversity. In cooperative transmission, one partner node assists one sensor node to transmit their data to destination. Instead of using M partners for M sensor nodes, we propose 1 partner for M sensor nodes. Proposed protocol offers similar diversity order as conventional one with much less bandwidth and hardware. It is able to almost reduce scattered nodes interference using orthogonal sub-carriers. In addition, we examined a power allocation between sensor nodes and relay that optimize the system performance.