• Title/Summary/Keyword: Power Vector

Search Result 1,571, Processing Time 0.03 seconds

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

A Study on the Speed Control of PMSM for Elevator Drive (엘리베이터구동용 영구자석형 동기전동기의 속도제어에 관한 연구)

  • Yu J.S.;Kim L.H.;Choi G.J.;Yoon K.C.;Jung M.T.;Kim Y.C.;Lee S.S.;Won C.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.461-466
    • /
    • 2003
  • This paper presents the speed control of the surface-mounted permanent-magnet synchronous motors (SMPMSM) for the elevator drive. The elevator motor needs to be a compact and slim type. Essentially, the proposed scheme uses a vector control algorithm for a speed and torque control. This system is implemented using a high speed 32-bit DSP (TMS320C31-50), a high-integrated logic device FPGA (EPF10K10-Tl144-3) to design compactly and Inexpensively The proposed scheme is verified through digital simulation and experiments for a three-phase 13.3kW SMPMSM as a MRL(MachineRoomless) elevator motor ill the laboratory. Finally, experiment of the test tower was performed with a 48kW PWM converter-inverter system for a high- speed elevator .

  • PDF

A Study on the Velocity Distributions and Pressure Distributions in Ejector (Ejector 내의 유동특성에 관한 연구)

  • Lee, Haeng-Nam;Park, Ji-Man;Lee, Duck-Gu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.254-259
    • /
    • 2003
  • The Ejector is used to get low pressure, and it has been applied to a lot of industry field like the heat engine, the fluid instrument power plant, the food industry, environment industry etc... because there are not any problem even it is mixed with a any kind of liquid, gas, and solid. The flow characteristics in ejector are investigated by PIV and CFD. The experiment using PIV measurement for mixing pipe’s flow characteristics acquired velocity distribution, .Condition : when mixing pipe’s diameter ratio is 1:1.9, and the flux is $Q_{1}=1.136\;l/s$, $Q_{2}=1.706\;l/s$, $Q_{3}=2.276\;l/s$. Based on the PIV and the CFD results, the flow characteristics in ejector are discussed, and it shows the validity of this study.

  • PDF

A Study on Dual-IDS Technique for Improving Safety and Reliability in Internet of Things (사물인터넷 환경에서 안전성과 신뢰성 향상을 위한 Dual-IDS 기법에 관한 연구)

  • Yang, Hwanseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.49-57
    • /
    • 2017
  • IoT can be connected through a single network not only objects which can be connected to existing internet but also objects which has communication capability. This IoT environment will be a huge change to the existing communication paradigm. However, the big security problem must be solved in order to develop further IoT. Security mechanisms reflecting these characteristics should be applied because devices participating in the IoT have low processing ability and low power. In addition, devices which perform abnormal behaviors between objects should be also detected. Therefore, in this paper, we proposed D-IDS technique for efficient detection of malicious attack nodes between devices participating in the IoT. The proposed technique performs the central detection and distribution detection to improve the performance of attack detection. The central detection monitors the entire network traffic at the boundary router using SVM technique and detects abnormal behavior. And the distribution detection combines RSSI value and reliability of node and detects Sybil attack node. The performance of attack detection against malicious nodes is improved through the attack detection process. The superiority of the proposed technique can be verified by experiments.

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF

Micromachining of the Si Wafer Surface Using Femtoseocond Laser Pulses (펨토초 레이저를 이용한 실리콘 웨이퍼 표면 미세가공 특성)

  • Kim, Jae-Gu;Chang, Won-Seok;Cho, Sung-Hak;Whang, Kyung-Hyun;Na, Suck-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.184-189
    • /
    • 2005
  • An experimental study of the femtosecond laser machining of Si materials was carried out. Direct laser machining of the materials for the feature size of a few micron scale has the advantage of low cost and simple process comparing to the semiconductor process, E-beam lithography, ECM and other machining process. Further, the femtosecond laser is the better tool to machine the micro parts due to its characteristics of minimizing the heat affected zone(HAZ). As a result of line cutting of Si, the optimal condition had the region of the effective energy of 2mJ/mm-2.5mJ/mm with the power of 0.5mW-1.5mW. The polarization effects of the incident beam existed in the machining qualities, therefore the sample motion should be perpendicular to the projection of the electric vector. We also observed the periodic ripple patterns which come out in condition of the pulse overlap with the threshold energy. Finally, we could machined the groove with the linewidth of below $2{\mu}m$ for the application of MEMS device repairing, scribing and arbitrary patterning.

Analytical Approach of Sliding Installation Method with Spar Structure

  • Lee, Jong-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.7
    • /
    • pp.575-580
    • /
    • 2011
  • It is important to understand the trajectory of structure in launching process because of the short time of launching process may result in unexpected accidents or damage to structures. The high risk of structural failure is not avoidable without the fully comprehension of changing forces in launching procedure. The commercial software can evaluate the motion of launching event in calm water condition but there is the limitation of research application because of the programmed commercial software. The launching process of the spar hull is suggested with stage concept that is divided into 10 stages in time domain. A force equilibrium diagram is derived for each stage where the changes of force vector and motion characteristics take place. In particular, the effects of changes in buoyancy and drag force due to the progressive submergence of the spar hull are taken into account by means of a touch length concept. The results contained in this paper provide the valuable information of the trajectory motion evaluation with suggested methods in spar launching process with sliding barge. Furthermore, the presented stage concept and touch length concept will provide basic knowledge for understanding launching process and help to develop further research area for launching analysis.

On-line Efficiency Optimization of IPMSM drive using Fuzzy Control and Loss Minimization Method (퍼지제어와 손실최소화 기법을 이용한 IPMSM 드라이브의 실시간 효율최적화 제어)

  • Kang, Seong-Jun;Ko, Jae-Sub;Jang, Mi-Geum;Kim, Soon-Young;Mun, Ju-Hui;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1356-1357
    • /
    • 2011
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes on-line efficiency optimization of IPMSM drive using fuzzy logic control(FLC) and the loss minimization method. In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to IPMSM drive system and the operating characteristics controlled by the loss minimization method and FLC control are examined in detail.

  • PDF

Investigation of the IPMSM Parameter Variation Effect to the System Operation Characteristics of the Multi Inverter Driven High Speed Train System (다중 인버터 구동 고속전철 시스템의 IPMSM 파라미터 변동에 따른 운전 특성 고찰)

  • Park, Dong-Kyu;Jin, Kang-Hwan;Chang, Chin-Young;Kim, Sung-Je;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.193-199
    • /
    • 2011
  • The next generation domestic high speed railway system is a power distributed type and uses vector control method for motor speed control. Nowadays, inverter driven induction motor system is widely used. However, recently PMSM drives are deeply considered as a alternative candidate instead of an induction motor driven system due to their advantages in efficiency, noise reduction and maintenance. The next-generation high-speed train is composed of 2 converter units, 4 inverter units, and 4 Traction Motor units. Each motor is connected to the inverter directly. In this paper, the effects of IPMSM parameter variation to the system operation characteristics of the multi inverter driven high speed train system are investigated. The parallel connected inverter input-output characteristics are analyzed to the parameter mismatches of the IPMSM in 1C1M control using Matlab/Simulink, then the reliability of the simulation results are verified through experimental results.

Data Abstraction in Battlefield Smart Maps Based on QR Tags (QR 태그 기반 전장 스마트 지도에서의 자료 추상화)

  • Kwak, Noh Sup;Yun, Young-Sun;Jung, Jinman;So, Sun Sup;Eun, Seongbae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.440-446
    • /
    • 2020
  • The application field of smart terminals is increasing and its application is also spreading in the defense field. The use of smart terminal based map application is very important in battle fields. The problem is that the communication infrastructure is easy to collapse and the use of GPS is usually disturbed. In this paper, we studied the maps stored in the QR tag at the battle field. The problem is to abstract the map information so that it can be stored in the small QR tag. We have abstracted path information on a vector basis and require only a small amount of data compared to imaged path information. We analyzed the amount of data generated by the abstraction and mathematically analyzed the boundary where the amount does not exceed the capacity limit of the QR tag. Our research can be applied not only to battlefields, but also to disaster / disaster scenes, or in environments with difficult Internet communications, such as mountainous areas.