• Title/Summary/Keyword: Power Ultrasound

Search Result 194, Processing Time 0.032 seconds

Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

  • Kim, Hun-Hee;Kim, Hak-Joon;Song, Sung-Jin;Kim, Kyung-Cho;Kim, Yong-Buem
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.228-235
    • /
    • 2016
  • Flaws at dissimilar metal welds (DMWs), such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM), Bottom Mounted Instrumentation (BMI) etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC) in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM) simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

Evaluation of the Resolution Characteristics by Using ATS 535H Phantom for Ultrasound Medical Imaging (초음파 의료영상에서 ATS 535H 팬텀을 이용한 해상력 특성 평가)

  • Jung-Whan, Min;Hoi-Woun, Jeong;Hea-Kyung, Kang
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • This study was purpose to assessment of the resolution characteristics by using ATS 535H Basic quality assurance (QA) phantom for ultrasound. The ultrasound equipment was used Logiq P6 (Ultrasound, GE Healthcare System, Chicago, IL, USA). And the ultrasound transducer were used Convex 4C (4~5.5 MHz), Linear 11L (10~13 MHz), Sector 3SP (3~5.5 MHz) probe. As for the noise power spectrum (NPS) comparison results by using ATS 535H Basic QA ultrasound phantom and Convex 4C, Linear 11L, Sector 3SP probe. The NPS value of the Convex 4C probe image was 0.0049, Linear 11L probe image was 0.0049, Sector 3SP probe image was 0.1422 when the frequency is 1.0 mm-1. The modulation transfer function (MTF) comparison results by using ATS 535H Basic QA ultrasound phantom and Linear 11L probe the MTF value of the 3 cm focus image was 0.7511 and 4 cm focus image was 0.9001 when the frequency is 1.0 mm-1. This study was presented characteristics of spatial resolution a quantitative evaluation methods by using ultrasound medical images for QA of ultrasound medical QA phantom. The quality control (QC) for equipment maintenance can be efficiently used in the clinic due to the quantitative evaluation of the NPS and MTF as the standard methods. It is meaningful in that it is applied mutatis mutandis and presented the results of physical resolution characteristics of the ultrasound medical image.

Extraction Method of Ultrasound Spectral Information using Phase-Compensation and Weighted Averaging Techniques (위상 보상과 가중치 평균을 이용한 의료 초음파 신호의 주파수 특성 추출 방법)

  • Kim, Hyung-Suk;Yi, Joon-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.959-966
    • /
    • 2010
  • Quantitative ultrasound analysis provides fundamental information of various ultrasound parameters using spectral information of the short-gated radiofrequency(RF) data. Therefore, accurate extraction of spectral information from backscattered RF signal is crucial for further analysis of medical ultrasound parameters. In this paper, we propose two techniques for calculating a more accurate power spectrum which are based on the phase-compensation using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio(SNR). The simulation results demonstrate that the proposed method estimates better results with 10% smaller estimation variances compared to the conventional methods.

A Study on the Development of High-Intensity Focused Ultrasound Skin Treatment System Through Frequency Output Control Optimization (주파수 출력 제어 최적화를 통한 고강도 집속 초음파 피부치료 시스템 개발 연구)

  • Park, Jong-Cheol;Kim, Min-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1022-1037
    • /
    • 2022
  • It is important to develop a transducer that generates uniform output power through frequency control of the HIFU at 4 MHz frequency for the high intensity focused ultrasound (HIFU) skin diseases treatment. In this paper, a 4 MHz frequency band HIFU system for skin disease treatment was designed, manufactured and developed. In HIFU, even for the ultrasonic vibrator in the 4 MHz frequency band, the characteristics of the output power of the HIFU are different depending on the difference in the thickness of the PZT material. Through the development of a system amplifier, the sound output of the HIFU transducer was improved to more than 48 W and uniform output power control was possible. And, it is possible to control the output power even in a frequency band of 4.0 to 4.7 MHz, which is wider than 4.0 MHz, and shows the resonance frequency of the transducer. The maximum output power for each frequency was 49.969 W and the minimum value was 48.018 W. The maximum output power compared to the minimum output power is 49.969 W, which is uniform within 4.1%. It was confirmed that the output power of the HIFU through the amplifier can be uniformly controlled in the 4 MHz frequency band.

Effects of Ultrasound Stimuli on Acceleration of Brown Rice Germination (초음파 자극이 현미발아 촉진에 미치는 영향)

  • Lee, J.;Lim, K.T.;Hong, J.H.;Lee, Y.B.;Rhee, C.O.;Chung, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.506-513
    • /
    • 2006
  • The effects of ultrasound stimuli on the germination and sprout growth of brown rice were investigated. Ultrasound was applied to brown rice at the frequencies of 28, 40, and 60 kHz before germination test and it was germinated in three methods (Type I, II and III). Type I was to soak brown rice into water for 60 hours. Type II was to expose brown rice to air for 48 hours after soaking them into water for 12 hours. Type III was a repetitive method of water-soaking and air exposure for 12 hours respectively. The most effective method for the germination was Type III without ultrasound. However, Type I was a best method after ultrasound treatment. As power of ultrasound increased, sprouts grew faster after brown rice were treated in 40%, 70%, and 100% power (0.137, 0.241, and 0.344 $W/cm^2$) at 40 kHz. The good treatments for fast sprout growth of brown rice at each frequency were the 28 kHz-10min group, the 40 kHz-5min group, and the 60 kHz-20min group of Type I. The best effective treatment was the 40 kHz-5min group at 0.344 $W/cm^2$ and at that condition the time required for sprout growth of 2.5 m was 51.9 hours. The ultrasound stimuli was very effective in the beginning of the rice germination, and the germination ratio was more than 95% in all ultrasound treatments.

Ultrasound Backscattering from Erythrocyte Aggregation of Human, Horse and Rat Blood under Rotational Flow in a Cylindrical Chamber

  • Nam, Kweon-Ho;Paeng, Dong-Guk;Choi, Min-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.159-165
    • /
    • 2006
  • Human, horse and rat bloods in a cylindrical chamber where flow was controlled by a stirring magnet were used for studying red blood cell aggregation. Ultrasound backscattered powers from blood were obtained from the backscattered signals measured by a 5 MHz focused transducer in a pulse-echo setup. The experimental results showed the differences in red blood cell (RBC) aggregation tendency among the three mammalian species with an order of horse > human > rat. The ultrasound backscattered power decreased with stirring speed in human and horse blood, but no variations were observed in rat blood. Sudden flow stoppage led to the slow increase of the backscattered power for human and horse blood. There was no self-aggregation tendency in rat blood. The enveloped echo images showed the spatial and temporal variations of RBC aggregations in the cylindrical chamber. These observations from the different mammalian species may give a better understanding of the mechanism of RBC aggregation.

Electromyographic Analysis of Wrist Flexors by the Shape of Ultrasound Head (초음파 도자의 모양에 따른 손목굽힘근의 근전도 분석)

  • Kim, Won-Ho;Kim, Jong-Man;Park, Hyung-Ki;Park, Eun-Young
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2007
  • The purpose of this study was to investigate electromyographic activities of the flexor digitorum superficialis (FDS) and the flexor carpi ulnaris (FCU) by the shape of the ultrasound head. Twelve healthy subjects participated and performed ultrasound therapy with a round head and a long handled head during each 5-minute application. Electromyographic activities of the FDS and FCU were recorded by surface electrodes and normalized by maximal voluntary isometric contraction (MVIC) values. There was no difference in the muscular fatigue of FDS and FCU as determined by the shape of the ultrasound head (p>.05). Without the shape of head, the mean power frequency decreased with the time. There also was no difference in %MVIC of the FDS and FCU as determined by the shape of the ultrasound head (p>.05), but the force exerted exceeded 20%MVIC. There was however a significant difference in the amount of cumulative workload of the FDS and FCU as determined by the shape of ultrasound head (p<.05). The workload was however not affected by the shape of the ultrasound head. Constant static grasp of ultrasound transducer head during ultrasound therapy is considered a high risk factor of work-related musculoskeletal disease.

  • PDF

Ultrasound-Assisted Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Cultures (식물세포배양으로부터 파클리탁셀 회수를 위한 초음파를 이용한 액-액 추출)

  • Ha, Geon-Soo;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.229-233
    • /
    • 2016
  • In this study, an efficient ultrasound-assisted liquid-liquid extraction process was developed for recovering of paclitaxel from plant cell cultures. The optimal ultrasonic power and operating time were 250 W and 15 min at fixed ratio of bottom phase, methylene chloride to top phase, MeOH (25%, v/v). Under the optimal conditions developed in the present method, most of the paclitaxel (~92%) was recovered from crude extract by a single extraction step. Due to the synergistic effect of ultrasound by the addition of inorganic salt, an appropriate inorganic salt concentration and the ultrasonic power were found to be required for the effective recovery of paclitaxel using ultrasound-assisted liquid-liquid extraction.

A Welding Defect Inspection using an Ultrasound Excited Thermography (초음파 서모그라피를 이용한 용접 결함 검사)

  • Jo Jae-Wan;Jeong Jin-Man;Choi Yeong-Su;Jeong Seung-Ho;Jeong Hyeon-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.148-150
    • /
    • 2006
  • In this paper, the applicability of an UET(ultrasound excited thermography) for a defect detection of the welded receptacle is described. An UET(ultrasound excited thermography) is a defect-selective and fast imaging tool for damage detection. A high power ultrasound-excited vibration energy with pulse durations of 280ms is injected into the outer surface of the welded receptacle made of Al material. An ultrasound vibration energy sent into the welded receptacle propagate inside the sample until they are converted into the heat in the vicinity of the defect. The injection of the ultrasound excited vibration energy results in heat generation so that the defect is turned into a local thermal wave transmitter. Its local heat emission is monitored by the thermal infrared camera. And they are processed by the image recording system. Measurement was performed on aluminum receptacle welded by using Nd:YAG laser. The observed thermal image revealed two area of defects along the welded seam.

  • PDF