• Title/Summary/Keyword: Power Transmission Systems

Search Result 1,405, Processing Time 0.035 seconds

Multi-Rate and Multi-BEP Transmission Scheme Using Adaptive Overlapping Pulse-Position Modulator and Power Controller in Optical CDMA Systems

  • Miyazawa Takaya;Sasase Iwao
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.462-470
    • /
    • 2005
  • We propose a multi-rate and multi-BEP transmission scheme using adaptive overlapping pulse-position modulator (OPPM) and optical power controller in optical code division multiple access (CDMA) networks. The proposed system achieves the multi-rate and multi-BEP transmission by accommodating users with different values of OPPM parameter and transmitted power in the same network. The proposed scheme has advantages that the system is not required to change the code length and number of weight depending on the required bit rate of a user and the difference of bit rates does not have so much effect on the bit error probabilities (BEPs). Moreover, the difference of transmitted powers does not cause the change of bit rate. We analyze the BEPs of the four multimedia service classes corresponding to the com­binations of high/low-rates and low/high-BEPs and show that the proposed scheme can easily achieve distinct differentiation of the service classes with the simple system configuration.

A Study on Fault Detecting for Underground Power Transmission Lines using Optical Field Sensors (광응용 자계센서를 이용한 지중송전선 사고구간 검출에 관한 연구)

  • Lee, Kwang-Jung;Kim, Seok-Koo;Park, Hae-Soo;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.91-93
    • /
    • 1994
  • Recently, for improving the power supply reliability and for rationslizing maintenance, new maintenance and monitoring systems are stornagly desired for use in the field of electric power transmission. In this paper, we describes the optical fault detecting method of underground power transmission lines using bareearth doped YIG Faraday sensors which are very light, small size and fast response. As regarding, we use the zero phase current detecting algorithm at insulated joints.

  • PDF

A Simulation of Lightning Faults Reducing Effects on the 154 kV Transmission Tower by Auxiliary Grounding (보조접지선 시공에 의한 송전선로의 내뢰성 향상효과 모의)

  • Kwak, Joo-Sik;Shim, Jeong-Woon;Shim, Eung-Bo;Choi, Jong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1843-1846
    • /
    • 1997
  • This paper describes the fault reducing effects of the 154 kV transmission tower by auxiliary grounding from the top of the tower to ground. The grounding surge impedance of the auxiliary grounding system is calculated by CDEGS(:Current Distribution Electromagnetic Interference Grounding and Soil Structure Analysis), and the critical lightning back flashover current and arcing horn dynamic characteristics are simulated by EMTP/TACS(:Electromagnetic Transient Program/Transient Analysis of Control Systems). The calculated results of total LFOR(Lightning Flashover Rate) shows that the LFOR can be reduced from 5.2(count/100km. year) to 3.4 by auxiliary grounding on the 154 kV transmission tower with one ground wire shielding system.

  • PDF

Maximization of Transmission System Loadability with Optimal FACTS Installation Strategy

  • Chang, Ya-Chin;Chang, Rung-Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.991-1001
    • /
    • 2013
  • Instead of building new substations or transmission lines, proper installation of flexible AC transmission systems (FACTS) devices can make the transmission networks accommodate more power transfers with less expansion cost. In this paper, the problem to maximize power system loadability by optimally installing two types of FACTS devices, namely static var compensator (SVC) and thyristor controlled series compensator (TCSC), is formulated as a mixed discrete-continuous nonlinear optimization problem (MDCP). To reduce the complexity of the problem, the locations suitable for SVC and TCSC installations are first investigated with tangent vector technique and real power flow performance index (PI) sensitivity factor and, with the specified locations for SVC and TCSC installations, a set of schemes is formed. For each scheme with the specific locations for SVC and TCSC installations, the MDCP is reduced to a continuous nonlinear optimization problem and the computing efficiency can be largely improved. Finally, to cope with the technical and economic concerns simultaneously, the scheme with the biggest utilization index value is recommended. The IEEE-14 bus system and a practical power system are used to validate the proposed method.

Analysis of the optimum optical signal power and the longest transmission length in nonlinear optical transmission systems (비선형 광통신 시스템에서 최대 전송거리 및 최적 광신호 세기 도출에 관한 연구)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.567-571
    • /
    • 2012
  • To design the long-haul optical communication system, we need to decide the type of optical fiber and optical amplifier, span length of optical amplifier, dispersion compensation method, optical signal power, etc. Therefore, we need to predict the performance of optical communication system when we change one of the system parameters. In this paper, we investigate the method of predicting the maximum transmission length of the designed optical communication system and finding the optimum optical signal power to obtain the maximum transmission length.

A Study on Development of Online Wide Area SynchroPhasor and Voltage Stability Monitoring System using Satellite Network (위성망을 이용한 온라인 광역 동기위상 및 전압안정도 감시 시스템 개발에 관한 연구)

  • Kwon, Dae-Yun;Kim, Tae-Jin;Yoon, Sang-Hyun;Jung, Gwang-Gyun;Oh, Gyu-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.273-274
    • /
    • 2008
  • Recently, the most wide-area blackout in North America, Canada and Europe had shown us indirectly the importance of Wide-Area Power System Protection and had influence on the direction of domestic electric power industry. After reorganization of the electric power industry in 2001, market incentives controls the power generation, transmission and distribution rather than stability of power grid, and moreover it produce bad results like inefficient facility management and too much competition. In addition, we can easily predict the massive loss of social and economic when the wide-area outage occurs by north direction load flow which is a pending problems of domestic power system and in a changed industry likes hi-tech manufacture and information technology industries. This paper introduces the development of infra systems for prevent wide-area blackout in situations of the power system operations.

  • PDF

Development of RTDS model for Sea-Deagu SVC (실시간 디지털 시뮬레이터를 위한 서대구 SVC 모델 개발)

  • Kim, Y.K.;Lee, J.;Yoon, Y.B.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.280-282
    • /
    • 2002
  • This paper presents the characteristics and Real Time Digital Simulator(RTDS) model for Seo-deagu Static Var Compensator(SVC) systems installed in 1999. SVC system is a power system controller using power electronics called Flexible AC Transmission Systems (FACTS). RTDS model for Seo-deagu SVC is developed and verified, we recognize to be essential for SVC systems and understand SVC systems through simulation.

  • PDF

A Study on the Fault Discrimination and Location Algorithm in Underground Transmission Systems Using Wavelet Transform and Fuzzy Inference (지중송전계통에서 Wavelet 변환과 퍼지추론을 이용한 고장종류판별 및 고장점 추정에 관한 연구)

  • Park, Jae-Hong;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.3
    • /
    • pp.116-122
    • /
    • 2006
  • The underground transmission lines is continuously expanded in power systems. Therefore the fault of underground transmission lines are increased every year because of the complication of systems. However the studies dealing with fault location in the case of the underground transmission lines are rarely reported except for few papers using traveling wave method and calculating underground cable impedance. This paper describes the algorithm using fuzzy system and travelling wave method in the underground transmission line. Fuzzy inference is used for fault discrimination. To organize fuzzy algorithm, it is important to select target data reflecting various underground transmission line transient states. These data are made of voltage and average of RMS value on zero sequence current within one cycle after fault occurrence. Travelling wave based on wavelet transform is used for fault location. In this paper, a variety of underground transmission line transient states are simulated by EMTP/ATPDraw and Matlab. The input which is used to fault location algorithm are Detail 1(D1) coefficients of differential current. D1 coefficients are obtained by wavelet transform. As a result of applying the fuzzy inference and travelling wave based on wavelet transform, fault discrimination is correctly distinguished within 1/2 cycle after fault occurrence and fault location is comparatively correct.

Research on vibration control of a transmission tower-line system using SMA-BTMD subjected to wind load

  • Tian, Li;Luo, Jingyu;Zhou, Mengyao;Bi, Wenzhe;Liu, Yuping
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.571-585
    • /
    • 2022
  • As a vital component of power grids, long-span transmission tower-line systems are vulnerable to wind load excitation due to their high flexibility and low structural damping. Therefore, it is essential to reduce wind-induced responses of tower-line coupling systems to ensure their safe and reliable operation. To this end, a shape memory alloy-bidirectional tuned mass damper (SMA-BTMD) is proposed in this study to reduce wind-induced vibrations of long-span transmission tower-line systems. A 1220 m Songhua River long-span transmission system is selected as the primary structure and modeled using ANSYS software. The vibration suppression performance of an optimized SMA-BTMD attached to the transmission tower is evaluated and compared with the effects of a conventional bidirectional tuned mass damper. Furthermore, the impacts of frequency ratios and SMA composition on the vibration reduction performance of the SMA-BTMD are evaluated. The results show that the SMA-BTMD provides superior vibration control of the long-span transmission tower-line system. In addition, changes in frequency ratios and SMA composition have a substantial impact on the vibration suppression effects of the SMA-BTMD. This research can provide a reference for the practical engineering application of the SMA-BTMD developed in this study.

A Study on Electrical Power Trading in Minimum Price Wholesale Market (최소 가격 도매경쟁시장에서의 전력 거래에 관한 연구)

  • Seo, Tae-Min;Lee, Hee-Sang
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.379-386
    • /
    • 2011
  • The importance of renewable energy technology is discussed and next generation power transmission networks, which is called the smart grid, are constructed in developed countries. However for construction and operation of the smart grid, it is required not only to develop the electrical power generation technologies and transmission equipments but also to study systematic analysis and optimization for design and operation of the smart grid. In this paper we study electrical power trade in the smart grid using operations research models and simulation methods. We also consider future electrical power exchange markets in Korea and build four scenarios and the related optimization and simulation models, which reflect electrical power transaction pricing strategies of stake-holders. We can also simulate electrical power exchange market and analyze the results of electrical power trading, which can give us some insights for future electrical power exchange market.