• Title/Summary/Keyword: Power System Transient Stability Simulation

Search Result 125, Processing Time 0.026 seconds

Design and Application of a Nonlinear Coordinated Excitation and TCPS Controller in Power Systems

  • Hashmani Ashfaque Ahmed;Wang Youyi;Lie Tek Tjing
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.346-354
    • /
    • 2005
  • This paper presents a new approach to Thyristor Controlled Phase Shifter (TCPS) control. In this paper we have proposed a nonlinear coordinated generator excitation and TCPS controller to enhance the transient stability of a power system. The proposed controller is able to control three main parameters affecting a.c. power transmission: namely excitation voltage, phase angle and reactance in a coordinated manner. The TCPS is located at the midpoint of the transmission line. A nonlinear feedback control law is proposed to linearize and decouple the power system. The design of the proposed controller is based on the local measurements only. Simulation results have been shown to demonstrate the effectiveness of the proposed controller for the enhancement of transient stability of the power system under a large sudden fault.

The Stability of Power System Including Superconducting Generator (초전도 발전기를 갖는 전력계통의 안정도)

  • Won, Y.J.;Kim, S.W.;Suh, J.Y.;Baik, Y.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1072-1074
    • /
    • 1993
  • The superconducting generator has better efficiency, larger power, higher voltage, bigger power per weight ratio and bigger power per volume ratio than conventional machines. Furthermore, for the synchronous reactance of the superconducting generator is smaller than that of conventional ones, the capacity of power transfer is much larger than conventional machina. But, the low inertia constant of superconducting generator hurts the transient stability of power system. This paper deals with the comparisons of transient characteristics between superconducting generator and conventional generator by computer simulation.

  • PDF

Development of Dynamic Simulation Algorithm of UPFC (UPFC의 동적 시뮬레이션 알고리즘 개발)

  • Son, K.M.;Kim, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.226-228
    • /
    • 1999
  • This paper presents a dynamic simulation algorithm for studying the effect of Unified Power Flow Controller(UPFC) on the low frequency power system oscillations and transient stability studies. The algorithm is a Newton-type one and gives a fast convergence characteristics. The algorithm is applied to inter-area power oscillation damping regulator design of a sample two-area power system. The results show that UPFC is very effective for damping inter-area oscillations.

  • PDF

A Fast Screening Algorithm for On-Line Transient Stability Assessment (온라인 과도안정도 판정을 위한 상정사고 고속 스크리닝 알고리즘 개발)

  • Lee, Jong-Seock;Yang, Jung-Dae;Lee, Byong-Jun;Kwon, Sae-Hyuk;Nam, Hae-Kon;Choo, Jin-Boo;Lee, Koung-Guk;Yun, Sang-Hyun;Park, Byung-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.225-233
    • /
    • 2001
  • SIME(SIngle Machine Equivalent) method has been recognized as a useful tool to determine transient stability of power systems. In this paper, SIME method is used to develop the KEPCO transient stability assessment (TSA) tool. A new screening algorithm that can be implemented in SIME method is proposed. The salient feature of the proposed screening algorithm is as follows. First, critical generators are identified by a new index in the early stage of the time domain simulation. Thus, computational time required to find OMIB(One Machine Infinite Bus) can be reduced significantly. Second, clustering critical machines can be performed even in very stable cases. It enables to be avoid extra calculation of time trajectory that is needed in SIME for classifying the stable cases. Finally, using power-angle trajectory and subdividing contingency classification have improved the screening capability. This algorithm is applied to the fast TSA of the KEPCO system.

  • PDF

A Fast Contingency Screening Algorithm for On-line Transient Security Assessment Based on Stability Index

  • Nam, Hae-Kon;Kim, Yong-Hak;Song, Sung-Geun;Kim, Yong-Gu
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.4
    • /
    • pp.131-135
    • /
    • 2002
  • This paper describes a new ultra-fast contingency screening algorithm for on-line TSA without time simulation. All machines are represented in a classical model and the stability index is defined as the ratio between acceleration power during a fault and deceleration power after clearing the fault. Critical clustering of machines is done based on the stability index, and the power-angle curve of the critical machines is drawn assuming that the angles of the critical machines increase uniformly, while those of the non-critical ones remain constant. Finally, the critical clearing time (CCT) is computed using the power-angle curve. The proposed algorithm is tested on the KEPCO system comprised of 900-bus and 230-machines. The CCT values computed with the screening algorithm are in good agreement with those computed using the detailed model and the SIME method. The computation time for screening about 270 contingencies is 17 seconds with 1.2 GHz PC.

Korean Power System Security Analysis Using Benchmark Systems

  • Cho Yoon-Sung;Jang Gilsoo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.207-213
    • /
    • 2005
  • This paper deals with the development of benchmark systems based on the Korea Electric Power Corporation (KEPCO) system. A novel procedure for constructing a dynamic equivalent system of the KEPCO system is proposed. By using such a system, various scenarios can be simulated and compared with the original system. The results of the simulation show the benefits of the proposed equivalent system and its validity is confirmed by applying it to the KEPCO system.

The Merger of Transient Stability Analysis Program for dynamic models (다이나믹 모델의 과도 안정도 해석 프로그램 통합)

  • Sim Gyu Sang;Cho Yoon Sung;Jang Gil Soo;Lee Byong Jun;Kwon Sae Hyuk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.239-241
    • /
    • 2004
  • The purpose of this paper is to explain techniques achieved while developing a transient stability program which is suitable to Korean power system. It concentrates on the development of a synchronous machine model, exciter models and turbine-governor models used in large-scale power system stability analysis. These proposed models enhance the performance of the developing program. This developing program has been tested with the KEPCO system, and the simulation results obtained from the program are compared to those of commercial programs.

  • PDF

An analysis of transient stability for small scale power system separated from large scale power system at N-2 contingency (2중 상정고장시 대규모 전력계통으로부터 분리된 소규모 전력계통 과도안정도 분석)

  • Yoon, Gi-Seob;Baik, Seung-Do;Gu, Sung-Wan;Lee, Chong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.134-135
    • /
    • 2003
  • Abstract in case of the small scale power system separated from large scale power system N-2 contingency, the Over excitation, Under Frequency and Power swing Tripping Relay operate depending on unbalance Of Generation and Load. and then we studied and measured the angle and frequency deviation between generators. moreover, we compared real fault example with simulation results.

  • PDF

Applications of Eigen-Sensitivity for Contingency Screening of Transient Stability in Large Scale Power Systems (대규모 전력계통의 과도안정도 상정사고 선택에 고유치감도 응용)

  • Shim, Kwan-Shik;Nam, Hae-Kon;Kim, Yong-Ku;Song, Sung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.193-196
    • /
    • 1999
  • This paper presents a new systematic contingency selection and screening method for transient stability. The variation of modal synchronizing torque coefficient(MSTC) is computed using eigen-sensitivity analysis of the electromechanical oscillation modes in small signal stability model and contingencies are ranked in decreasing order of the sensitivities of the MSTC(SMSTC). The relevant clusters are identified using the eigenvector or participating factor. The proposed algorithm is tested on the KEPCO system. Ranking obtained by the SMSTC is consistent with the time simulation results by PSS/E.

  • PDF

A Study on the Optimal Parameter Selection of a Power System Stabilizer and Power Converters for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치와 전력변환기 적정 파라미터 선정에 관한 연구)

  • 조의상;김경철;최홍규
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-72
    • /
    • 2001
  • Power system stabilizer act efficiently to damp the electromechanical oscillations in interconnected power systems. This paper presents an algorithm for the optimal parameter selection of a power system stabilizer in two-area power systems with a series HVDC link. This method is one of the classical techniques by allocating properly pole-zero positions to fit as closely as desired the ideal phase lead between the voltage reference and the generator electrical power and by changing the gain to produce a necessary damping torque over the matched frequency range. Control of HVDC converter and inverter are used a constant current loop. Proper parameters of PI controllers are obtain based on the Root-locus technique in other to have sufficient speed and stability margin to cope with charging reference values and disturbance. The small signal stability arid transient stability studies using the PSS parameters obtained from this method show that a natural oscillation frequency of the studycase system is adequately damped. Also the simulation results using the HVDC converter and inverter parameters obtained from this proposed method show proper current control characteristics. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.

  • PDF