• Title/Summary/Keyword: Power System Measurement

Search Result 2,042, Processing Time 0.033 seconds

Interconnected AC/DC System (문직운전계통을 포함한 전럭계통에서의 상태주정에 관한 연구)

  • 김준현;박건수;이종범
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 1988
  • This paper descibes a method for the state estimation in power systems with interconnected AC/DC system. The state values in interconnected AC/DC system are estimated using measurement values with the pseudo measurement so that the number of telemetering measurement can be reduced. Especially, the state values in AC system are estimated through hierarchical method after system decomposition including superposition bus was formed for the state estimation in large-scale power systems. The results of the application to the two model power systems show the dffectiveness of the presented algorithms.

  • PDF

A Study on the Power Quality of the Grid connected Photovoltaic Power System (계통 연계형 태양광 발전시스템의 전력품질에 관한 연구)

  • Choi, Hyoung-Bum;Kim, Kyung-Chul;Hwang, Young-Rok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.88-98
    • /
    • 2011
  • Development and use of renewable energy due to environmental problems and depletion of energy affect grid-connected power system around the world. Therefore this paper analyzes the characteristic of gird connected photovoltaic power generation system which it is available to connect the utility. Renewable energy photovoltaic power system has been linked to the system to analyze the impact of photovoltaic system. MATLAB / Simulink program is modeled and analyzed on power quality of a photovoltaic power plant. It is measured that power data for the Grid connected photovoltaic power plant with instantaneous measuring, 3sec measuring, 10min measuring for 7 days. Harmonic field measurement have shown that the harmonic contents of a waveform varies with time. A cumulative probability approach is the most commonly used method to solve time varying harmonics. so, it is used 50[%] cumulative probability approach. This paper provides an in depth analysis on power quality field measurement of the Grid connected photovoltaic power plant.

Scheme for Harmonics measurement in feeding System of high speed railroad (고속전철 급전계통에서의 고조파 측정 방안)

  • Choi, Heung-Kwan;Hwang, Chi-U;Yoon, Jae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.304-307
    • /
    • 1998
  • High speed railway is under construction from Seoul to Pusan. A traveling train is large single phase load that consumes 14MW power in feeding system of high speed railroad. In this paper, measurement scheme and method of power system harmonics which are generated from those loads in railroad supply system are described. This measurement scheme will be used as a first step to pave a way to power quality management due to harmonic distortion by the highspeed rail way.

  • PDF

Development of a Software System for Measurements of Combustion Dynamics of a Dry Low NOx Gas Turbine (건식 저 NOx 가스터빈의 연소동압 측정용 소프트웨어 시스템 개발)

  • Jang, Wook;Seo, Seok-Bin;Jung, Jae-Hwa;An, Dal-Hong;Kim, Jong-Jin;Cha, Dong-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.931-938
    • /
    • 2002
  • Combustion dynamics of a dry low NOx gas turbine have been measured by utilizing a dynamic pressure measurement system. The software part of the measurement system, implemented with a commercial general-purpose DASYLab version 5.6 code, basically acquires combustion dynamics signals, performs the FFT analysis, and displays the results. The gas turbine often experiences momentary combustion instability, especially when its combustion mode changes. It is found that the measurement system developed in the study may outperform the other commercial dynamic pressure measurement system. The developed system currently serves to monitor the combustion dynamics of the gas turbine.

The Development of Prototype Synchronized Phasor Measurement Device for Real-time Power System Monitoring (전력계통 실시간 감시를 위한 동기위상측정장치의 시작품 개발)

  • 김학만;전진홍;김종율;남기영
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.230-236
    • /
    • 2002
  • In real-time power system control, it is essential to measure the power system variables which are voltage, current, real and reactive power, power factor, system frequency and etc. These variables can be estimated or calculated by the synchronized phasor informations of voltage and current. Therefore, the synchronized phasor measurement of voltage and current is very important to real-time power system control. So, we develop SPMD (Synchronized Phasor Measurement Device) for synchronized phasor measurement of voltage and current. In this paper, we present the design and implementation of SPMD for real-time phasor measurement and the test results of developed SPMD on 380 V 3 phase distribution line in laboratory with resistor load and RTDS (Real Time Digital Simulator).

New Techniques for Impedance Characteristics Measurement of Islanded Microgrid based on Stability Analysis

  • Hou, Lixiang;Zhuo, Fang;Shi, Hongtao
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1163-1175
    • /
    • 2016
  • In recent years, microgrids have been the focus of considerable attention in distributed energy distribution. Microgrids contain a large number of power electronic devices that can potentially cause negative impedance instability. Harmonic impedance is an important tool to analyze stability and power quality of microgrids. Harmonic impedance can also be used in harmonic source localization. Precise measurement of microgrid impedance and analysis of system stability with impedances are essential to increase stability. In this study, we introduce a new square wave current injection method for impedance measurement and stability analysis. First, three stability criteria based on impedance parameters are presented. Then, we present a new impedance measurement method for microgrids based on square wave current injection. By injecting an unbalanced line-to-line current between two lines of the AC system, the method determines all impedance information in the traditional synchronous reference frame d-q model. Finally, the microgrid impedances of each part and the overall microgrid are calculated to verify the measurement results. In the experiments, a simulation model of a three-phase AC microgrid is developed using PSCAD, and the AC system harmonic impedance measuring device is developed.

Review of the measurement uncertainty of Tr no-load loss measuring system (변압기철손 측정시스템의 측정 불확도)

  • Kang, T.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.139-141
    • /
    • 2005
  • For the reliable evaluation of the distribution and power transformer no-load loss measurement, measurement uncertainty of the transformer measuring system, consisted of current transformer, potential transformer and power metering equipment is required. In this paper, we describe the uncertainty of transformer measuring system based on ANSI/IEEE C57.12.90.

  • PDF

Trust-Tech based Parameter Estimation and its Application to Power System Load Modeling

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong;Yu, David C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.451-459
    • /
    • 2008
  • Accurate load modeling is essential for power system static and dynamic analysis. By the nature of the problem of parameter estimation for power system load modeling using actual measurements, multiple local optimal solutions may exist and local methods can be trapped in a local optimal solution giving possibly poor performance. In this paper, Trust-Tech, a novel methodology for global optimization, is applied to tackle the multiple local optimal solutions issue in measurement-based power system load modeling. Multiple sets of parameter values of a composite load model are obtained using Trust-Tech in a deterministic manner. Numerical studies indicate that Trust-Tech along with conventional local methods can be successfully applied to power system load model parameter estimation in measurement-based approaches.

Efficient Measurement of Wind Velocity and Direction Using Dual Rotor Wind Power Generator in Vessel (Dual Rotor 풍력발전을 이용한 선박에서의 효과적인 풍향 풍속 측정)

  • Choi, Won-Yeon;Park, Gye-Do;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.309-317
    • /
    • 2010
  • This paper proposes an efficient measurement system for the velocity and direction of the wind using the dual rotor wind power generator in vessel. Conventional digital measurement system recognizes the direction and the velocity of the wind using the electric compass or synchronous motor and Vane probe method using hall sensors. But each system has its own short-comings: the synchronous motor has a larger measurement error than the magnetic compass and magnetic compass is weak for the external disturbances such as fluctuation of the vessel. To compensate these short-comings, this paper proposes a new compensation algorithm for the fluctuation errors according to the external interference and the unexpected movement of the vessel along the roll and pitch directions. The proposed system is implemented with the dual compasses and a synchronous motor. The proposed independent power generation system can be operated by itself and can raise the efficiency of the wind power generation systems of 30 ~ 400 W installed along the vertical and horizontal axes. The proposed system also realizes the efficient and reliable power production system by the MPPT algorithm for the real-time recognition of the wind direction and velocity. An advanced switching algorithm for the battery charging system has been also proposed. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

DESIGN OF A VIBRATION AND STRESS MEASUREMENT SYSTEM FOR AN ADVANCED POWER REACTOR 1400 REACTOR VESSEL INTERNALS COMPREHENSIVE VIBRATION ASSESSMENT PROGRAM

  • Ko, Do-Young;Kim, Kyu-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.249-256
    • /
    • 2013
  • In accordance with the US Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP) has been developed for an Advanced Power Reactor 1400 (APR1400). The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment). Thoughtful preparation is essential to the measurement program, because data acquisition must be performed only once. The optimized design of a vibration and stress measurement system for the RVI CVAP is essential to verify the integrity of the APR1400 RVI. We successfully designed a vibration and stress measurement system for the APR1400 RVI CVAP based on the design materials, the hydraulic and structural analysis results, and performance tests of transducers in an extreme environment. The measurement system designed in this paper will be utilized for the APR1400 RVI CVAP as part of the first construction project in Korea.