• Title/Summary/Keyword: Power System Measurement

Search Result 2,045, Processing Time 0.029 seconds

Thin-Plate-Type Embedded Ultrasonic Transducer Based on Magnetostriction for the Thickness Monitoring of the Secondary Piping System of a Nuclear Power Plant

  • Heo, Taehoon;Cho, Seung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1404-1411
    • /
    • 2016
  • Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

The research of the UWB system radiation measurement (UWB 시스템의 방사출력 측정방법 연구)

  • Song, Hong-Jong;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.277-286
    • /
    • 2010
  • In this paper we analyse radiation measurement method for UWB wireless system of the wideband low power frequency characteristics. In the radiation measurement environment we discuss RMS electric field strength, UWB PSD, UWB detect signal level, UWB noise signal collection etc.. also, we discuss power measure method of the CISPR16-1, low level e.i.r.p radiation measurement method. lastly we analyse consideration problem for the signal analyser of the UWB system.

An Optimal Algorithm of Harmonic State Estimation using Immune Algorithm on Power System (IA를 이용한 전력시스템 고조파 상태 추정 최적 알고리즘)

  • Park, I.P.;Wang, Y.P.;Chung, H.H.;Park, H.C.;Ahn, B.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.92-94
    • /
    • 2003
  • The design of a measurement system to perform Harmonic State Estimation(HSE) is a very complex problem. In particular, the number of available harmonic instruments (Continuous Harmonic Analysis in Real Time : CHART) is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents an optimal algorithm of HSE which is based on an optimal placement of measurement points using Immune Algorithm (IAs). This HSE has been applied to power system for the validation of an optimal algorithm of HSE. The study results have indicated an economical and effective method for optimal placement of measurement points using IAs in the HSE.

  • PDF

Intelligent Algorithm of Harmonic State Estimation for Power System (전력시스템 고조파 상태추정 지능형 알고리즘 개발)

  • Wang Yong P;Lee Hyun J;Chong Hyeng H;Kim Sang H;Park Hee C;Chong Dong I
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.286-288
    • /
    • 2004
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs). This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Genetic Algorithms (GAs) in the Harmonic State Estimation (HSE).

  • PDF

Optimal Placement of Phasor Measurement Unit for Observation Reliability Enhancement

  • TRAN, Van-Khoi;ZHANG, He-sheng;NGUYEN, Van-Nghia
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.996-1006
    • /
    • 2017
  • Phasor Measurement Unit (PMU) placement is a crucial problem for State Estimation (SE) of the power system, which can ensure that the power network is fully observed. Further, the observation reliability problem of the system has been concerned in the operation conditions. In this paper, based on modified weighted adjacent matrix ($A_w$), an optimal placement method is proposed to solve simultaneously two problems involving the optimal PMU placement problem and the observation reliability enhancement problem of the system. The purpose of the proposed method is to achieve both the minimum total cost and the maximum observation reliability, with a focus on increasing the security of observability, strengthening the observation reliability of buses as well as enhancing the effectiveness of redundancy. Simulations on IEEE 14, 24, 30 and 57 bus test systems are presented to justify the methodology. The results of this study show that the proposed method is not only ensuring the power network having the observability effectively but also enhancing significantly the observation reliability. Therefore, it can be a useful tool for SE of the power system.

Manufacture of Custom IC and System for Multi-channel Biotelemeter (다채널 바이오텔레미터 개발을 위한 전용 IC 및 시스템 제작)

  • 서희돈;박종대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.172-180
    • /
    • 1994
  • Implantable biotelemetry systems are indispensable tools not only in animal research but also in clinical medicine as such systems enable the acquisition of otherwise unavailable physiological data. We present the manufacture of CMOS IC and its system for implantable multichannel biotelemeter system. The internal circuits of this system are designed not only to achieve as multiple functions and low power dissipation as possible but also to enable continuous measurement of physiological data. Its main functions are to enable continuous measurement of physiological data and to accomplish on-off power swiching of an implantable battery by receiving appropriate commanc signals from an external circuit. The implantable circuits of this system are designed and fabricated on a single silicon chip using $1.5\mu$m n-well CMOS process technology. The total power dissipation of implantable circuits for a continuous operation was 6.7mW and for a stand-by operation was 15.2$\mu$ W. This system used together with approriate sensors is expected to contribute to clinical medicine telemetry system of measuring and wireless transmitting such significant physiological parameters as pressure pH and temperature.

  • PDF

Development of automatic measurement system for dynamic respose time of pneumatic solenoid valve (공압밸브의 동적응답 특성측정 자동화 시스템 개발)

  • 강보식;김형의
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.974-978
    • /
    • 1991
  • Electro-pneumatic valve is an electro-mechanical device which converts electric signal into pneumatic flow mu or pressure. A measurement of dynamic response time is very important to evaluate valve performance. Dynamic response time of electro-pneumatic valve has a variation accordance with valve types, operating way and test standard. In this study, automatic measurement system of dynamic response time is composed based on test condition of dynamic response time test standard(CETOP, JIS). Also, in this study test pressure variation characteristics accordance with variation of solenoid excitation power, and we developed dynamic response measurement system enable to compare of and analyze these two characteristics.

  • PDF

Assessment of the Implementation of a Neutron Measurement System During the Commissioning of the Jordan Research and Training Reactor

  • Bae, Sanghoon;Suh, Sangmun;Cha, Hanju
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.504-516
    • /
    • 2017
  • The Jordan Research and Training Reactor (JRTR) is the first research reactor in Jordan, the commissioning of which is ongoing. The reactor is a 5-MWth, open-pool type, light-water-moderated, and cooled reactor with a heavy water reflector system. The neutron measurement system (NMS) applied to the JRTR employs a wide-range fission chamber that can cover from source range to power range. A high-sensitivity boron trifluoride counter was added to obtain more accurate measurements of the neutron signals and to calibrate the log power signals; the NMS has a major role in the entire commissioning stage. However, few case studies exist concerning the application of the NMS to a research reactor. This study introduces the features of the NMS and the boron trifluoride counter in the JRTR and shares valuable experiences from lessons learned from the system installation to its early commissioning. In particular, the background noise relative to the signal-to-noise ratio and the NMS signal interlock are elaborated. The results of the count rates with the neutron source and the effects of the discriminator threshold are summarized.

A Study on the Development of Shaft Power Measuring System (축계 마력 측정 시스템의 개발에 관한 연구)

  • Nam, Taek-Kun;Lee, Don-Chul;Roh, Young-Oh;Heo, Gwang-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.3-4
    • /
    • 2006
  • In this paper, a development of shaft power measuring system for a rotating machinery is discussed. It is important that the exact power measurement of marine engine since the engine power is related to ship's usage and its shaft design. The engine equipped on the ship is assumed to rotating machine which can generate mechanical power by electrical energy. Two gearwheel and magnetic sensors are applied to measure torsional angle on the shaft. High resolution encoder is also applied to compensate the output signal from gearwheel. The calculation of shaft power is executed using measured signal and angular velocity of rotating machine.

  • PDF

Optimal Placement of the Phasor Measurement Units in Power System (전력계통의 페이저 측정기 최적배치)

  • Kim, Jae-Hun;Jo, Gi-Seon;Kim, Hoi-Chul;Shin, Jung-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.313-322
    • /
    • 2000
  • This paper presents optimal placement of minimal set of Phasor Measurement Units (PMU's) and observability analysis of the network with PMU's. In order to find a observable system, a symbolic method which directly assigns an appropriate symbol for measurement or pseudo-measurement to every entry of node-branch incidence matrix is proposed. It is much simpler and easier to analyze the observability of the network with PMU's than the conventional ones. For the optimal PMU placement problem, two approaches which are based on a modified Simulated-Annealing (SA) method and a Direct Combination method are proposed. Some case studies with IEEE sample system are made to show the performance of the proposed methods are almost alike and more effective than the conventional simulated-annealing method. It is also shown that the Direct Combination method is more effective than the modified simulated-annealing one in the sense of computation burden. The results of this study showed also that the accuracy of power system estimation and system observability can be improved the proposed PMU placements.

  • PDF