• 제목/요약/키워드: Power System Blockset

검색결과 5건 처리시간 0.024초

직류철도 급전계통 고장점표정 (A Fault Location Algorithm for on DC Railway Systems)

  • 양언필;강상희;이승재;최면송
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.3-5
    • /
    • 2002
  • If a fault occurs in the DC railway system, it is important to find fault location and to remove it immediately for prompt repair. The aim of the present paper is to locate the position of the fault by using Kirchhoff's voltage law(KVL). The DC railway system is simulated using Power System Blockset(PSB) in Matlab Toolbox.

  • PDF

A Three-Phase Four-Wire DSTATCOM for Power Quality Improvement

  • Singh, Bhim;Jayaprakash, P.;Kothari, D.P.
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.259-267
    • /
    • 2008
  • Power quality improvement in a three-phase four-wire system is achieved using a new topology of DSTATCOM (distribution static compensator) consisting of a star/delta transformer with a tertiary winding and a three-leg VSC (voltage source converter). This new topology of DSTATCOM is proposed for power factor correction or voltage regulation along with harmonic elimination, load balancing and neutral current compensation. A tertiary winding is introduced in each phase for a delta connected secondary in addition to the star-star windings and this delta connected winding is responsible for neutral current compensation. The dynamic performance of the proposed DSTATCOM system is demonstrated using MATLAB with its Simulink and Power System Blockset (PSB) toolboxes under varying loads. The capacitor supported DC bus of the DSTATCOM is regulated to the reference voltage under varying loads.

전력시스템 고조파 외란의 자동식별 (Automatic Classification of Power System Harmonic Disturbances)

  • 김병철;김현수;남상원
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.551-558
    • /
    • 2000
  • In this paper a systematic approach to automatic classificationi of power system harmonic disturbances is proposed where the proposed approach consists of the following three steps:(i) detecting and localizing each harmonic disturbance by applying discrete wavelet transform(DWT) (ii) extracting an efficient feature vector from each detected disturbance waveform by utilizing FFT and principal component analysis (PCA) along with Fisher's criterion and (iii) classifying the corresponding type of each harmonic disturbance by recognizing the pattern of each feature vector. To demonstrate the performance and applicability of the proposed classification procedure some simulation results obtained by analyzing 8-class power system harmonic disturbances being generated with Matlab power system blockset are also provided.

  • PDF

시간-주파수 해석 기법을 이용한 특징벡터 추출 및 전력 외란 신호 식별에의 응용 (Feature Vector Extraction using Time-Frequency Analysis and its Application to Power Quality Disturbance Classification)

  • 이주영;김기표;남상원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.619-622
    • /
    • 2001
  • In this paper, an efficient approach to classification of transient and harmonic disturbances in power systems is proposed. First, the Stop-and-Go CA CFAR Detector is utilized to detect a disturbance from the power signals which are mixed with other disturbances and noise. Then, (i) Wigner Distribution, SVD(Singular Value Decomposition) and Fisher´s Criterion (ii) DWT and Fisher´s Criterion, are applied to extract an efficient feature vector. For the classification procedure, a combined neural network classifier is proposed to classify each corresponding disturbance class. Finally, the 10 class data simulated by Matlab power system blockset are used to demonstrate the performance of the proposed classification system.

  • PDF

시정수를 이용한 직류철도급전계통에서의 고장판단 및 고장점표정 알고리즘 (A Fault Detection and Location Algorithm Using a Time Constant for DC Railway Systems)

  • 양언필;강상희;권영진
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권10호
    • /
    • pp.563-570
    • /
    • 2003
  • When a fault occurs on railway feeders it is very important to detect the fault to protect trains and facilities. Because a DC railway system has low feeder voltage, The fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the load starting current. The load starting current increases step by step but the fault current increases at one time. So the type of $\Delta$I/ relay(50F) was developed using the different characteristics between the load starting current and the fault current. The load starting current increases step by step so the time constant of each step is much smaller than that of the fault current. First, to detect faults in DC railway systems, an algorithm using the time constant calculated by the method of least squares is presented in this paper. If a fault occurs on DC railway systems it is necessary to find a fault location to repair the faulted system as soon as possible. The second aim of the paper is to calculate the accurate fault location using Kirchhoff's voltage law.