• Title/Summary/Keyword: Power Storage Device

Search Result 310, Processing Time 0.024 seconds

A Consideration on the Superconductivity Energy Storage Technology (초전도 에너지 저장 기술에 대한 고찰)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.6
    • /
    • pp.691-698
    • /
    • 2015
  • Recently, the power industry has a great interest in the superconducting energy storage device as a way to maximize energy efficiency to cope with global warming. A superconducting energy storage device can archive maximization of electric energy use efficiency by storing in the form of a magnetic field energy or a kinetic energy without loss a large amount of electrical energy at the non-peak load and then converting it again into electric energy at the peak load. Therefore, in this study, such as the concept of the superconducting energy storage technologies, the present state of its research and development and its applications are surveyed and analyzed to establish methodology applying the superconducting energy storage technologies to power system.

Recent Instantiation Case of Lead Acid Battery for Energy Storage Systems (에너지 저장 시스템용 납 축전지의 최근 실증 사례)

  • An, Sang-Yong;Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.344-349
    • /
    • 2013
  • Energy storage system is an energy reservoir which can store the electrical energy produced by the power plant into the chemical energy at the time whenever it needs to use. Accordingly, the energy storage system can help to improve the energy utilization efficiency and the stabilization of the power supply system. In addition, it can cope with the issues of carbon dioxide reduction and depletion of fossil fuel. Lead-acid battery in the secondary battery fields is one of the most developed technologies. It is also economical, reliable storage device. Therefore, the instantiation case of energy storage system using lead-acid battery was investigated for the reference studies.

A Novel Energy Storage System based on Flywheel for Improving Power System Stability

  • Wu, Jinbo;Wen, Jinyu;Sun, Haishun;Cheng, Shijie
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.447-458
    • /
    • 2011
  • In this paper, a novel flywheel energy storage device, called the flexible power conditioner, which integrates both the characteristics of the flywheel energy storage and the doubly-fed induction machine, is proposed to improve power system stability. A prototype is developed and its principle, composition, and design are described in detail. The control system is investigated and the operating characteristics are analyzed. The test results based on the prototype are presented and evaluated. The test results illustrate that the prototype meets the design requirement on power regulation and starting, and provides a cost-effective and effective means to improve power system stability.

Power Output Control of Wind Generation System Through Energy Storage System and STATCOM (에너지저장장치 및 STATCOM을 이용한 풍력발전시스템의 출력제어 기법)

  • Kim, Jong-Yul;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1718-1726
    • /
    • 2010
  • Utilization of renewable energy is becoming increaingly important from the viewpoints of environmental protection and conservation of fossil fuel. However, the generating power of renewable energy is always fluctuating due to the environmental status. This paper presents a scheme for supervisory control of wind generation system with the energy storage and STATCOM to reduce the power variation. In this paper, we especially concentrate on constant power output control of wind generation system. In order to achieve this purpose, the coordinated control strategy between different types of energy storage system and reactive power compensation device. The proposed control scheme has been validated by PSCAD/EMTDC simulation. As a result, the proposed scheme can handle the power output of wind generation system with a constant value.

Superconducting Magnetic Energy Storage (SMES) Control Models for the Improvement of Power System Stability (계통안정도 개선을 위한 SMES 제어모델에 관한 연구)

  • Ham, Wan-Kyun;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.501-503
    • /
    • 2005
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device.

  • PDF

A Development of the Electric Power Supply System for PRT Vehicle (PRT 차량의 전력 공급시스템 개발)

  • Kim, Baek-Hyun;Jeong, Rag-Gyo;Chung, Sang-Gi;Kang, Seok-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.196-200
    • /
    • 2013
  • In this paper, the design of PRT vehicle power supply system is discussed. Since there is no power feeding line facilities in PRT system under development, the PRT vehicle must have its own energy storage device on board. For the energy storage device, ultra-capacitor bank is applied due to its fast charging capability and long life time. Charging the Ultra-capacitor bank is performed by wireless inductive power transfer system. The capacitor bank is charged up in less than 10 seconds when the vehicle is traveling by passenger stations. In this paper the design of the ultra-capacitor bank and the wireless inductive power transfer system for the PRT vehicle are discussed. Tests are conducted for the both system and the result shows the efficiency of the wireless inductive power transfer system is higher than 80%.

A Basic Study of Energy Storage Super Capacitor for PV System (PV시스템 적용을 위한 슈퍼 커폐시터 기초 특성 고찰)

  • Yu Gwon-Jong;Jung Young-Seok;Jung Myung-Woong;Park Yong-Sung;Choi Jaeho;Choi Ju-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.49-52
    • /
    • 2002
  • Super Capacitors are now commercially available. To design an energy storage system with these devices it has to be understood that the device cannot be described by a single fixed capacitance. Furthermore, an internal charge redistribution process makes it difficult to predict the terminal voltage accurately. As a result, the device should be operated as a charge storage device and not as a voltage source. This paper deals with Energy Storage System with Super Capacitor for PV System. Discussed in this paper we, explains the basic characteristics of Super Capacitor which is compared with the Second Batteries.

  • PDF

Predicting the Lifetime of Super-capacitor for DC Traction Regenerative Energy Storage System (직류철도 회생에너지 저장시스템용 슈퍼커패시터 수명예측)

  • Kim, Jong-Yoon;Park, Chan-Heung;Cho, Kee-Hyun;Jang, Su-Jin;Lee, Byoung-Kuk;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.212-214
    • /
    • 2007
  • Regenerative energy which is generated during brake periods of DC traction might cause malfunction or destruction of rectifier or any other power conversion devices caused the increment of DC line voltage. Regenerative energy storage system using super-capacitor is one of the method to control the DC line voltage safely. And super-capacitor is very important device as energy storage device. Therefore, In this paper, we designed the regenerative energy storage system using super-capacitor and propose the method about predicting the lifetime of super-capacitor established in storage system. According to the this research, we can estimate the proper replacement moment for the existed super-capacitor due to the safety of the system. And improve the reliability of regenerative energy storage system using super-capacitor.

  • PDF

Three-Phase PWM-Switched Autotransformer Voltage-Sag Compensator Based on Phase Angle Analysis

  • Mansor, Muhamad;Rahim, Nasrudin Abd.
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.897-903
    • /
    • 2011
  • Many voltage sag compensators have been introduced, including the traditional dynamic voltage restorer (DVR), which requires an energy storage device but is inadequate for compensating deep and long-duration voltage sags. The AC-AC sag compensators introduced next do not require a storage device and they are capable of compensating voltage sags. This type of compensator needs an AC-AC converter to regulate the output voltage. Presented in this paper is a three-phase PWM-switched autotransformer voltage sag compensator based on an AC-AC converter that uses a proposed detection technique and PWM voltage control as a controller. Its effectiveness and capability in instantly detecting and compensating voltage sags were verified via MATLAB/Simulink simulations and further investigated through a laboratory prototype developed with a TMS320F2812 DSP as the main controller.

Design and analysis of slider and suspension in 4${\times}$l near-field probe array

  • Hong Eo-Jin;Oh Woo-Seok;Jung Min-Su;Park No-Cheol;Yang Hyun-Seok;Park Young-Pil;Lee Sung-Q;Park Kang-Ho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.47-52
    • /
    • 2005
  • A lot of information storage devices have been introduced and developed for recently years. The trends of those devices are high capacity, compact size, low power consumption, reliability, and removability for data interchange with other device. As a satisfaction of these trends, near-field technique is in the spotlight as the next generation device. In order for a near-field recording to be successfully implemented in the storage device, a slider and suspension is introduced as actuating mechanism. The optical slider is designed considering near-filed optics. Suspension is not only supports slider performance, and tracking servo capacity but also meets the optical characteristics such as tilt aberration, and guarantee to satisfy shock performances for the mobility fir the actuator. In this study, the optical slider and the suspension for near-field probe array are designed and analyzed considering dynamic performance of head-gimbal assembly and shock simulation..

  • PDF