• Title/Summary/Keyword: Power Steering

Search Result 390, Processing Time 0.025 seconds

Torque Control Simulation of the Column Type EPS System using MATLAB/Simulink (MATLAB/Simulink를 이용한 컬럼형 전동조향장치(EPS)의 토크제어 시뮬레이션)

  • Pang Du-Yeol;Lee Seong-Cheol;Jang Bong-Chun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.277-278
    • /
    • 2006
  • As a development of technology, electric power steering system which uses an electric motor came to use in recent and it can solve the problems with hydraulic power steering system. In this paper, vehicle model and electric power steering system are combined to fulfill full vehicle model. By simulation effect of motor torque assist through electric power steering revealed effective, and full vehicle model are proved reasonable through comparison with real car experimental datum.

  • PDF

Characteristic Comparison of Brushless Motor Type for EPS System (전동식 조향장치용 영구자석형 브러시리스 모터의 타입별 특성 비교)

  • Lee, Min-Hwan;Kim, Il-Yong;Lee, Choong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • As enforced by the regulation on the improving fuel efficiency and increased the demand on green technology, many interests are focused on electric vehicles and hybrid vehicles. Thus the technology development in electrification of vehicle operation system, including steering and braking field, is actively progressive. Especially electric power steering substitutes for hydraulic power steering rapidly in the market, which is more complex and bigger in packaging volume compared with electric power steering system. The core component in electric power steering system is a motor, which is required to be silent and powerful to guarantee required system performance. Brushless synchronous motors are widely used and many variations of the motors are introduced in the market, while the performance of each type is not well defined or studied for electric power steering system. In this paper, recent developments in brushless synchronous motor are reviewed and compared applying finite element analysis in electromagnetic field. As results, each characteristic of different types of brushless synchronous motors is compared and summarized for optimized selection in electric power steering system.

Analysis Model Development for Designing of Hydraulic Power Steering System (유압식 동력조향 장치 설계를 위한 해석 모델 개발)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.158-165
    • /
    • 2008
  • Hydraulic power steering system has been adopted in seniority passenger and commercial vehicle system for an easy maneuverability and a smoother ride. In this study, hydraulic power steering system analysis model which includes hydraulics and mechanical sub-systems was developed using commercial software, AMESim in order to predict characteristics for various steering components. Each component which constructs system was modeled and verified by experimentally obtained characteristics curves of each components. The agreement between simulation and experimental results shows the validity of the simulation model. The parameter sensitivity analysis such as valve opening area, torsional stiffness for system design are carried out by the analysis and experimental method.

Assisted Flow Rate Characteristics in Hydraulic Power Steering System (유압식 파워 스티어링 시스템의 어시스트 유량 특성)

  • Lee, Byung-Rim;Ryu, Sang-Woock;You, Chung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • Flow rate of the power steering oil pump is affected by oil temperature, engine rpm and pressure of pump. In this paper, considering those conditions, approximate model expressed by flow rate characteristics between hydraulic power steering oil pump and steering gear is proposed. Oil pump displacement is considered to be 9.6cc/rev. which is adapted to mid size car. Flow rate of the oil pump is predicted from the proposed model and compared with experimental data. And catch-up is also predicted in each steering wheel speed and is compared with experimental results.

A study on Analysis of Steering Feel for Electric Power Steering System Due to Motor Torque Ripple (모터 토크리플에 기인하는 전동식 조향장치 시스템의 조향감 해석에 대한 연구)

  • Kim, Chan-Mook;Han, Jeong-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.785-790
    • /
    • 2011
  • This paper presents the effects of an assisting motor torque ripple on a driver's steering feeling using a simulink. The EPS(Electric Power Steering) System is modeled as a 5 degrees of freedom for simulation. To find out the influence of a torque ripple on a driver's steering feeling, which is the purpose of this study, we observed the assisting torque in various different speeds, when the torque ripple increased by 0%~40%. The torque ripple had a small but definite influence on the assisting torque, and it had a greater influence in low speeds rather than high speeds.

  • PDF

Sliding Mode Control for an Electric Power Steering System in an Autonomous Lane Keeping System (자동 차선 유지 시스템의 전기식 파워 조향 시스템을 위한 슬라이딩 모드 제어기)

  • Yu, Jun Young;Kim, Wonhee;Son, Young Seop;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • In this paper, we develop a sliding mode control for steering wheel angle control based on torque overlay in order to resolve the problem of previous methods for Electric Power Steering (EPS) systems in the Lane Keeping System (LKS) of autonomous vehicles. For the controller design, we propose a 2nd order model of the electric power steering system in an autonomous LKS. The desired state model is designed to prevent a rapid change of the steering wheel angle. The sliding mode steering wheel angle controller is developed for the robustness of the disturbance. Since the proposed method is designed based on torque overlay, torque integration with basic functions of the EPS system for the steering wheel angle control is available for the driver's convenience. The performance of the proposed method was validated via experiments.

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

Development of Monolith Type Driving Pulley of Power Steering Hydraulic Pump (파워스티어링용 유압펌프의 일체형 풀리 개발)

  • Lee, C.T.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 2010
  • Most power steering systems work by using a hydraulic system to turn the vehicle's wheels. The pressure is usually provided by a hydraulic pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering gear, which in turn applies a torque to the steering axis of the road wheels. The flow to the cylinder is controlled by valves operated by the steering wheel ; the more torque the driver applies to the steering wheel and the shaft it is attached to, the more fluid the valves allow through to the cylinder, and so the more force is applied to steer the wheels in the appropriate direction. Since the pumps employed are of the positive displacement type, the flow rate they deliver is directly proportional to the speed of the engine. And for a long time, the type of hydraulic pump pulley was boss welding type. But recently, monolith type driving pulley is widely used. Therefore in this paper we studied the safety of monolith type driving pulley to the extracting force and endurance by FEM analysis and experiments.

  • PDF

A Study on the Improvement of Forming Process of Power Assisted Steering Part (PAS부품의 공정개선에 관한 연구)

  • 윤대영;황병복;유태곤
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.265-273
    • /
    • 2000
  • The conventional and new forging processes of the power steering worm blank are analyzed by the rigid-plastic finite element method. The conventional process contains three stages such as indentation, extrusion and upsetting, which was designed by a forming equipment expert. Process conditions such as reduction in area, semi-die angle and upsetting ratio are considered to prevent internal or geometrical defects. The results of simulation of the conventional forging process are summarized in terms of deformation patterns, load-stroke relationships and die pressures for each forming operation. Based on the simulation results of the current three-stage, the power steering worm blank forging process for improving the conventional process sequence is designed. Die pressures and forming loads of proposed process are within limit value which is proposed by experts and the proposed process is found to be proper for manufacturing the power steering worm blank.

  • PDF

An Experimental Study on Motor Noise Reduction of Electric Power Steering (전동식 파워스티어링 모터소음 저감을 위한 실험적 연구)

  • You, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.83-87
    • /
    • 2008
  • EPS(Electric Power Steering) system, which has replaced the hydraulic steering system(HPS or HPAS) in many passenger cars recently, have many merits such as low energy consumption, easy mounting, light weight and improvement of environmental pollution. However, EPS system has the problem of motor noise when motor is rotated, which can make a driver feel uncomfortable. There are many techniques to solve those problems, but they are not clear. It is necessary to evaluate the mechanical noise in steering systems, because an EPS has vibration sources such as at the motor gear reducer, manual gears and intermediate joints. In this paper, reduction technique of EPS motor noise is introduced.

  • PDF