• Title/Summary/Keyword: Power Shift

Search Result 1,057, Processing Time 0.026 seconds

Reactive Power and Soft-Switching Capability Analysis of Dual-Active-Bridge DC-DC Converters with Dual-Phase-Shift Control

  • Wen, Huiqing;Su, Bin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.18-30
    • /
    • 2015
  • This paper focuses on a systematical and in-depth analysis of the reactive power and soft-switching regions of Dual Active Bridge (DAB) converters with dual-phase-shift (DPS) control to achieve high efficiency in a wide operating range. The key features of the DPS operating modes are characterized and verified by analytical calculation and experimental tests. The mathematical expressions of the reactive power are derived and the reductions of the reactive power are illustrated with respect to a wide range of output power and voltage conversion ratios. The ZVS soft-switching boundary of the DPS is presented and one more leg with ZVS capability is achieved compared with the CPS control. With the selection of the optimal operating mode, the optimal phase-shift pair is determined by performance indices, which include the minimum peak or rms inductor current. All of the theoretical analysis and optimizations are verified by experimental tests. The experimental results with the DPS demonstrate the efficiency improvement for different load conditions and voltage conversion ratios.

A new proposal of three-step dc-dc converter scheme for solar power system

  • Lee, Hee-Chang;Park, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.358-361
    • /
    • 2007
  • We report on a new type dc-dc converter design that combines the advantage of dc ripple noise elimination and high efficiency. As potential low cost solar cells, DSC module and the panel's system efficiency and stability are still critical problems to the way of marketing. In this study, a new three-step dc-dc converter scheme with the phase-shift-carrier technology is proposed to apply for solar power system. We have achieved power conversion efficiency around 94.88%.

Series Connected DC/DC Converter for Fuel Cell System using Variable Phase Shift Switching Method (가변 위상변위 스위칭방식을 적용한 연료전지용 변압기 직렬형 DC/DC 컨버터)

  • Park, Noh-Sik;Kwon, Soon-Jae;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.461-468
    • /
    • 2008
  • This paper presents a novel series connected DC/DC converter and a proper variable phase shift switching method in order to obtain high voltage ratio for fuel cell system. The proposed series connected DC/DC converter has same rectifier and LC filter for DC output voltage, so it can reduce the number of passive devices regardless of the converter number. In the conventional constant phase shift switching method, the proposed series connected DC converters have inverse bias output voltage. In order to overcome this problem, a simple but proper variable phase shift switching method is proposed in the a novel series connected DC/DC converter. In order to verify the proposed system, simulation and experiments are implemented.

Fully Printed Dual-Band Power Divider Miniaturized by CRLH Phase-Shift Lines

  • Eom, Da-Jeong;Kahng, Sungtek
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.150-153
    • /
    • 2013
  • In this letter, a compact and fully printed composite right- and left-handed (CRLH) dual-band power divider is proposed. The branches of the conventional Wilkinson power divider are replaced by subwavelength CRLH phase-shift lines having $+90^{\circ}$ for one frequency and $-90^{\circ}$ for another frequency for dual-band and miniaturization performance. Equations are derived for the even- and odd-mode analysis combined with the dual-band CRLH circuit. A PCS and a WLAN band are chosen as the test case and the circuit approach agrees with the CAD simulation and the measurement. Additionally, the CRLH property is shown with the dispersion diagram and the eightfold size reduction is noted.

Digital-To-Phase-Shift PWM Circuit for High Power ZVS FB DC/DC Converter (대용량 ZVS FB DC/DC 컨버터에 있어서 Digital-To-Phase Shift PWM 발생회로)

  • 김은수;김태진;최해영;박순구;김윤호;이재학
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.618-621
    • /
    • 1999
  • With the advent of the high-speed microprocessor and DSP, the possibility of executing a control strategy in digital domain has become a reality. By the use of the DSP and microprocessor controller, many high power drive system may be enhanced resulting in the improved robustness to EMI, the ability to communicate the operating conditions and the ease of adjusting the control parameters. But, the digital controller using DSP or microprocessor is not applied in the high frequency switching power supplies, especially full bridge DC/DC converter. So, this paper presents the method and realization of designing a digital-to-phase shift PWM circuit for full digital controlled full bridge DC/DC converter with zero voltage switching. The operating principles, simulation and experimental results will be presented.

  • PDF

A New PSPM Modulation Scheme for Improving the Power Efficiency (전력 효율을 개선하는 새로운 PSPM 변조 방식)

  • Choe, Jae-Hun;Son, Jong-Won;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.752-759
    • /
    • 2010
  • The low power consumption is the most important design factor for the In-Body communication system of WBAN. The conventional PSSK (Phase-Silence-Shift-keying) modulation technique can be regarded as an extension from PSK modulation. And this PSSK has better power efficiency than PSK modulation, and higher spectral efficiency than FSK modulation. PSSK modulation is to transmit two orthogonal symbols. The transmission power can be lowered because the symbol rate in signal period becomes half. BER performance is improved because transmission power is lower and the modulation symbol distance is widened. In addition, PSSK preserve the low-power and increase the data rate than FSK. In this paper, we analyzed existing PSSK and like to propose a new PSPM (Phase-Shift-Position-Modulation) modulation scheme. This PSPM is evaluated in terms of considered bandwidth efficiency and BER performance, compared with the PSSK. This PSPM modulation method transmits the information data by both PSK symbol data and symbol position data, so that we can significantly improve the power efficiency. New proposed PSPM method could be very useful for the In-body communication that requires the most power efficient system.

DC Power Supply Driving Discharge Lamp Using PWM DC-DC Converter of Single- Phase Shift Soft Switching (위상 천이 소프트 스위칭 PWM DC-DC 컨버터를 이용한 방전등 구동용 직류 전원장치)

  • Lee, Hyun-Woo;Jung, Sang-Hwa;Kwon, Soon-Kurl;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.100-106
    • /
    • 2005
  • Generally, high frequency switching DC-DC converter that DC power supply for discharge lamp drive to generate ultraviolet rays(UV) is acted by hard switching mode is used. Therefore in this paper, wish to mix first existent first-side status phase shift PWM DC-DC converter and posing secondary-side status phase shift PWM DC-DC converter by high frequency link DC-DC converter that use soft switching circuit technology and develop DC power supply for discharge lamp drive. DC power supply driving Discharge lamp proposed describe validity through simulation and an experiment.

Numerical Study on High Temperature CO-Shift Reactor in IGFC (고온수소 전환 반응기에 관한 수치해석적 연구)

  • SEO, DONG-KYUN;LEE, JIN-HYANG;CHI, JUN-HWA;HONG, JIN-PYO;OH, SUK-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.324-330
    • /
    • 2018
  • In this study a numerical study was conducted to show flow, temperature and gas distributions in a high temperature CO shift reactor which was designed specially for energy saving and then evaluated with the related experiment. Mole fractions of syngas at the end of the catalyst bed were predicted with various assumed pre-exponential factors, were compared with the corresponding experimental results and $10^8$ was finally selected as the value. With the selection, a base case was examined. It was calculated that the inlet duct attached asymmetrically to the CO shift reactor affects on the distribution of the upward momentum (+z directional). In addition, CO conversion ratio is achieved up to 90% in the catalyst bed and especially it reached up to 70% at the initial part of catalyst bed.

Friction Coefficient, Torque Estimation, Smooth Shift Control Law for an Automatic Power Transmission

  • Jeong, Heon-Sul;Lee, Kyo-Ill
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.508-517
    • /
    • 2000
  • For shift quality improvement, torque sensors are currently too expensive to be used on production vehicles. To achieve smooth acceleration shift, the reference trajectory of the clutch slip speed for accomplishing the shift process within a designated shift completion time and its relationship with the clutch actuating torque were suggested by Jeong and Lee (1999). In order to facilitate the proposed algorithm, nonlinear estimators for necessary information such as the axle shaft torque, clutch friction and turbine torque were designed using only speed sensors. Accounting for the modeling error, a control law for this indirect smooth shift was proposed based on the above mentioned suggestions. Simulation results of the proposed estimators and shift controller were presented and further considerations for practical applications are discussed.

  • PDF