• 제목/요약/키워드: Power Shedding

Search Result 170, Processing Time 0.032 seconds

Control Strategy against Undesirable Zone 3 Relay Operation in Voltage Instability

  • Lee Byong-Jun;Song Hwa-Chang
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.144-151
    • /
    • 2005
  • This paper presents a framework for determining control strategies against unwanted tripping actions during relay operation that plays a very important role in cascading events leading to voltage collapse. The framework includes an algorithm for quick identification of possible zone 3 relay operation during voltage instability. Furthermore, it comes up with the control strategy of load shedding at the selected location with active power and relay margin criteria. In addition, Quasi Steady-State (QSS) simulation is employed to obtain time-related information that is valuable in the determination of control strategy. As a case study, an example applying the framework is shown with the modified New England 39-bus system.

A Study on the Emergency Control Algorithm for Viability Crisis of Power System (계통사고시 장해경감을 위한 긴급제어 알고리즘에 관한 연구)

  • 송길영;이희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.9
    • /
    • pp.591-599
    • /
    • 1988
  • After the short-term dynamics due to the major disturbance are over, the power system may lead to viability crisis state wherein there is possibility of cascading damage. This paper presents an emergency control algorithm to alleviate the obstacles of system frequency or bus voltage during the viability crisis state. The algorithm considers the effects of controlling reactive power sources for load shedding and generation reallocation in order to alleviate the obstacles. The problem is decomposed into a subproblem I and a subproblem II. The former minimizes system frequency deviation from nominal value and the latter voltage violation of load buses. The optimization problem is solved by a reduced gradient technique which can handle a great number of inequality constraints more easily. It has been verified that the use of the proposed algorithm for IEEE 14 bus system alleviates the obstacles efficiently during the viability crisis.

  • PDF

An Overload Alleviation Algorithm by Line Switching (선로절환에 의한 과부화 해소 앨고리즘)

  • 박규홍;정재길
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.459-467
    • /
    • 1992
  • This paper presents a new algorithm for the countermeasure to alleviate the line overloads due to contingency without shedding loads in a power system. This method for relieving the line overloads by line switching is based on obtaining the kine outage distribution factors-the linear sensitivity factors, which give the amount of change in the power flow of each line due to the removal of a line in a power system. There factors are made up of the elements of sparse bus reactance matrix and brach reactances. In this paper a fast algorithm and program is presented for obtaining only the required bus reactance elements which corresponds to a non-zero elements of bus admittance matrix, and elements of columns which correspond to two terminal buses of the overloaded(monitored) line. The proposed algorithm has been validated in tests on a 6-bus and the 30-bus test system.

  • PDF

An Allocation Strategy for Direct Load Control Program Resources in Power Systems (전력계통운전상황을 고려한 직접부하제어자원의 배분전략)

  • Cho, K.S.;Lee, C.J.;Park, J.B.;Shin, J.R.;Kim, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.444-446
    • /
    • 2003
  • This paper deals with an allocation strategy for the resources of direct load control program, which is considered the operating states in power systems. The existing approaches, load shedding priority algorithm, curtailment payback based algorithm and mixed curtailment algorithm, are based on the uniform allocation strategy. These approaches are not taken into account the operating states in power systems. So, under the critical operating condition, direct load control resource is evaluated by introducing the congestion factor.

  • PDF

DC-Voltage Regulation for Solar-Variable Speed Hybrid System

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.123-124
    • /
    • 2015
  • Recently interest on DC systems has been grown up extensively for more efficient connection with renewable energy. During the operation, there happens DC_link voltage variations. This paper focuses on the DC voltage stabilization applied in stand-alone DC microgrid to improve the system stability by keeping the voltage within limits. Batteries and a variable speed diesel generator cover the shortage of power after all available renewable energy is consumed. Load shedding or power generation reduction should automatically takes place if the maximum tolerable voltage variation is exceeded. PSIM based simulation results are presented to evaluate the performance of the proposed control measures.

  • PDF

Power Balancing Strategy in the Microgrid During Transient (마이크로그리드 과도상태 시 전력 수급 균형 전략)

  • Seo, Jae-Jin;Lee, Hak-Ju;Jung, Won-Wook;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.707-714
    • /
    • 2010
  • When problems such as line fault, breakdown of a substation or a generator, etc. arise on the grid, the Microgrid is designed to be separated or isolated from the grid. Most existing DGs(Distributed Generators) in distribution system use rotating machine. However, new DGs such as micro gas turbine, fuel cell, photo voltaic, wind turbine, etc. will be interfaced with the Microgrid through an inverter. So the Microgrid may have very lower inertia than the conventional distribution system. By the way, the rate of change of frequency depends on the inertia of the power system. Moreover, frequency has a strong coupling with active power in power system. Because the frequency of the Microgrid may change rapidly and largely during transient, appropriate and fast control strategy is needed for stable operation of the Microgrid. Therefore, this paper presents a power balancing strategy in Microgrid during transient. Despite of strong power or frequency excursions, power balancing in the Microgrid can be maintained.

Load-shedding mount examination that consider system operation environment (계통 운영상황을 고려한 적정 부하 차단량 검토)

  • Nam, S.C.;Shin, J.H.;Cha, S.T.;Son, H.I.;Shim, E.B.;Yoon, B.H.;Kim, K.I.;Kim, T.O.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.437-438
    • /
    • 2007
  • 현재 운전 중인 765kV 선로는 평시 수도권 부하의 상당 부분을 담당하는 중요한 역할을 수행하고 있다. 이러한 선로에 고장이 발생하면 수도권에 심각한 전압 불안정 현상이 발생하게 된다. 이에 대비하여 현재 765kV 선로 차단 시 부하를 차단하는 SPS(고장파급방지장치)를 운영중이다. 그러나 현재 운영중인 SPS는 정적인 검토만을 통하여 설계되었다. 따라서 과부족 차단에 의한 계통의 과전압 혹은 저 전압 문제가 발생할 수 있다. 본 논문은 우리나라에 UVLS 시스템을 적용 하기위한 타당성 검토의 선행과정으로 현재 운영중인 SPS의 부하 차단량이 실제 계통 상황을 고려 시 적정한지에 대한 검토를 실시하고자 한다.

  • PDF

Analysis of Connected Operations of PV Source and Li Energy Storage Equipment to Power System (태양광 전원과 리튬 에너지 저장장치의 연계운전시 특성 해석)

  • Kim, Deok Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.106-112
    • /
    • 2014
  • This paper presents the analysis of connected operation of photo voltaic source and Li energy storage system. The micro-grid has been installed and operated for several years at the campus of USF and has been a role of test bed. Photo voltaic source has been strongly influenced by the location, weather and climate of a installed area and Li battery is connected directly to the photo voltaic source to compensate for the limitations. The Li battery is operated to supply power output to the grid by the charging or discharging mode based on the average power output of the PV source which is calculated from monitored data for several years. The load of the PV and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery are analyzed in detail. In connected operations of PV and Li battery to power system, the PV and Li battery is operated to supply constant power during only day time or peak time to increase load shedding ratio and efficient usage of generation sources in power system.

A Study on Development of a New Algorithm to Solve Load Flow for Distribution Systems (배전계통조류계산을 위한 새로운 알고리즘에 관한 연구)

  • Moon, Young-Hyun;Yoo, Sung-Young;Choi, Byoung-Kon;Ha, Bock-Nam;Lee, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.918-922
    • /
    • 1998
  • With the development of industry, the qualitical advancement of power is needed. Since it is placed in the end step of power system, the fault at the distribution system causes some users blackout directly. So if the fault occurs, quick restoration is very important subject and, for the reason, induction of the distribution automation system is now being progressed briskly. For the quick restoration of the faulted distribution system, the load shedding of the blackout-area must be followed, and the other problems like the shedded load, faulted voltage and the rest may cause other accident. Accordingly load shedding must be based on the precise calculation technique during the distribution system load flow(dist flow) calculation. In these days because of its superior convergence characteristic the Newton-Raphson method is most widely used. The number of buses in the distribution system amounts to thousands, and if the fault occurs at the distribution system, the speed for the dist flow calculation is to be improved to apply to the On-Line system. However, Newton-Raphson method takes much time relatively because it must calculate the Jacobian matrix and inverse matrix at every iteration, and in the case of huge load, the equation is hard to converge. In this thesis. matrix equation is used to make algebraical expression and then to solve load flow equation and to modify above defects. Then the complex matrix is divided into real part and imaginary part to keep sparcity. As a result time needed for calculation diminished. Application of mentioned algorithm to 302 bus, 700 bus, 1004 bus system led to almost identical result got by Newton-Raphson method and showed constant convergence characteristic. The effect of time reduction showed 88.2%, 86.4%, 85.1% at each case of 302 bus, 700 bus system 86.4%, and 1004 bus system.

  • PDF

DC-Voltage Regulation for Solar-Variable Speed Hybrid System (태양광 기반의 가변속 하이브리드 시스템을 위한 직류 전압 제어)

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho;Song, Yujin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources, energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized control, the maximum power should be tracked from renewable resources during different operating modes of the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed. Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control measures.