• Title/Summary/Keyword: Power Plant Park

Search Result 1,376, Processing Time 0.032 seconds

Development of RCM Framework for Implementation on Safety Systems of Nuclear Power Plant

  • Kim, Tae-Woon;Brijendra Singh;Park, Chang K.;Chang, Tae-Whee;Song, Jin-Bae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.631-636
    • /
    • 1996
  • This paper presents a Reliability Centered Maintenance (RCM) framework for implementation on safety system of nuclear power plant (NPP). RCM is a systematic methodology to optimize the surveillance and maintenance tasks for critical components which provides efficiently and effectively reliability of system and safety of plant. Maintenance of the safety systems is essential for its safe and reliable operation. Reliability Centered Maintenance at NPP is the program which assure that plant system remains within original design criteria and that is not adversely affected during the plant life time. Aim of this paper is to provide the RCM framework to implement it on safety systems. RCM framework is described in four major steps.

  • PDF

Design of Economic Analysis Module for Waste Heat Recovery based on Systems Engineering Approach (시스템엔지니어링 기반 산업 폐열 발전시스템 경제성 분석 모듈 설계)

  • Kim, Joon Young;Cha, Jae Min;Park, Sung Ho;Shin, Jung Uk;Lee, Tae Kyong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • In the energy-guzzling industries such as steel making and cement, power plants utilizing waste heat have been attracting attention to increase energy efficiency. However, the existing economic analysis system doesn't consider the special working fluids and the cost models of the main equipment used in the waste heat recovery power plant. So it is difficult to estimate the plant economics accurately. Therefore, It is required to develop a economic analysis module that can more accurately evaluate for the power plant. In this study, the systems engineering approach was used to design and develop the module that systematically reflects the characteristics of the power plant and various requirements. Specifically, first, the special working fluids and main equipment applied to the power plant were investigated. Next, the cost models for each equipment were developed. Finally, the economic analysis module based on this was developed.

Efficiency Assessment of Turbine for Tidal Current Power Plant by In-Field Experimental Test (현장계측에 의한 조류 발전용 수차의 효율 평가)

  • Han, Sang-Hun;Lee, Kwang-Soo;Yum, Ki-Dai;Park, Woo-Sun;Park, Jin-Soon;Yi, Jin-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.517-520
    • /
    • 2006
  • The Korean peninsula has a number of coastal sites where the rhythmic rising and lowering of water surface due to tides results in strong tidal current. The kinetic energy of these currents can be efficiently exploited by use of tidal current turbines. The pilot tidal current power plant is to be constructed at the Uldolmok narrow channel between J info and Haenam, Our ins next Year, and extensive coastal engineer ing research works have been carried out. This paper describes and analyzes some observation results of field test about the efficiency of Helical turbine for tidal current power plant. The efficiency of turbine, which is diameter 2.2m and height 2.5m, is evaluated meximum RPM, torque, and current velocity. The tested turbines had the maximum efficiencies of the bounds of 25 to 35% in the current velocity range between 1.4 and 2.6 m/s. This result shows that the pilot tidal current power plant needs three helical turbines with diameter 3.0m and height 3.6m to produce electric power 500kW.

  • PDF

RCGVS Design Improvement and Depressurization Capability Tests for Ulchin Nuclear Power Plant Units 3 and 4

  • Sung, Kang-Sik;Seong, Ho-Je;Jeong, Won-Sang;Seo, Jong-Tae;Lee, Sang-Keun;Keun hyo Lim;Park, Kwon-Sik;Oh, Chul-Sung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.417-422
    • /
    • 1998
  • he Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3&4(UCN 3&4) has been improved from the Yonggwang Nuclear Power Plant Units 3&4(YGN 3&4) based on the evaluation results for depressurization capability tests performed at YGN 3&4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown Phenomena in order to optimize the orifice size of UCN 3&4 RCGVS. Baesd on these analyses results, the RCGVS orifice size for UCN 3&4 has been reduced to 9/32 inch from the l1/32 inch for YGN 3&4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3&4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation.

  • PDF

Dynamic Characteristic Analysis of Water-Turbine Generator Control System of Sihwa Tidal Power Plant (시화조력발전소 수차발전기 제어시스템의 동적 특성 해석)

  • Ahn, Sang-Ji;Ban, Yu-Hyeon;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.180-185
    • /
    • 2012
  • Tidal power is one of new and renewable energy sources. The seawater is stored inside a tidal embankment built at the mouth of a river or bay, where tides ebb and flow. The water turbine-generators produce power by exploiting the gap in the water level between the water outside and inside the embankment. Tidal power plant is a large plant that is installed on the sea. And then, the facility's operations and a separate control system for monitoring and maintenance is required. However, this plant predictive control of building systems and technologies have been avoided the transfer of technology from advanced global companies. Accordingly, the control system for core technology development and localization is urgently needed. This paper presents modeling and simulation using by PSS/E about generator, governor, exciter, and power system stabilizer for control system in Sihwa tidal power plant to improve the efficiency and develope of core technology. And the dynamic characteristics of governor and exciter were analyzed.

Comparison of properties at Fossil Power Plant by On-Line Real Time Performance Monitoring System (On-Line 실시간 성능감시 시스템을 이용한 화력발전소 운전 Parameter 값 비교분석)

  • Jung, Hoon;Park, Doo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3501-3505
    • /
    • 2007
  • As the power plant industry has been changed into competition structure, power generation companies do more with less by increasing capacity and lowering operation costs. In order to achieve this goals, an on-line real-time performance monitoring system has been needed to introduced to fossil power plant. The system represents a suite of related software modules which consist of on-line data, and on-line performance modules. This system can help the plant staff get the most out of their facilities by continuously monitoring deviations in equipment performance and the impact on those deviations on plant power, heat rate and operating cost. This paper shows the comparison of design value with acceptance test and current(measured) value.

  • PDF

Geotechnical Site Investigation for Designing of Tidal Power Plant Structures (조력발전 구조물 설계를 위한 지반조사;인천만 지반조사 사례)

  • Oh, Myoung-Hak;Lee, Kwang-Soo;Park, Jin-Soon;Yum, Ki-Dai;Cha, Dai-Wook;Yang, Geun-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.613-616
    • /
    • 2007
  • The main structures that comprise a tidal power plant are turbine structure, sluice structure, tide embankment and gate. Since these structures are founded on seabed ground, an extensive geotechnical site investigation to evaluate the engineering properties of field soils must be conducted prior to design and construction. According to the results of geotechnical site investigation conducted at the planned site for construction of Incheon bay tidal power plant, soft ground generally lie 7 meters below the seabed surface level. This research suggests the reliable and economical design of foundations and ground improvements required for construction of main structures in Incheon bay tidal power plant, with considerations on field conditions.

  • PDF

Development of 132kV XLPE Cable Composite Bushing EB-A (132kV XLPE Cable용 Composite Bushing 기중종단접속함 개발)

  • Kim, J.H.;Oh, E.J.;Kim, K.Y.;Park, J.K.;Jeoung, Y.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.547-549
    • /
    • 2000
  • Silicone insulators have many advantages over porcelain insulators. Especially silicone insulators have good characteristics of impact hardness, surface insulation, ease of processing, mass productivity and don't have risk of bombardment and vandalism. Recently insulation part made by silicone are becoming widely used. In this paper we introduce the development of Sealing End for 132kV XLPE cable with silicone composite hollow insulator and the adoption of it to a actual transmission line in abroad. This paper contains of design procedure, structure, electrical performance of it.

  • PDF

A Study on Unused Energy Management of Jeju City Waste Environment Center (제주시 폐기물환경사업소의 미활용에너지 활용방안 연구)

  • Kim, S.H.;Kwon, K.R.;Park, Y.C.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • In this study, waste heat of Jeju City Waste Environment Center is investigated and the utilization method is suggested with economical analysis of additional investment that needed for new facility. Energy balance of the typical facilities is considered in this study such as incineration plant and LFG power plant. The payback period of the investment which is used for the LFG power plant waste heat utilization facility is about 2.4 years and the economic profit of the facility during 10 years operation is up to 926 million won.

  • PDF

A Study on the Exergy Losses of Steam Power Plant (증기 원동소의 엑서지 손실에 관한 연구)

  • Park, J.C.;Jang, M.S.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.3
    • /
    • pp.235-243
    • /
    • 1989
  • The purpose of this paper is to obtain enthalpy balance and exergy analysis for the energy losses in a steam power plant. The enthalpy and exergy analysis of the steam power plant were carried out on the various output of steam turbine. While enthalpy analysis shows that circulating loss in the condenser is maximum, exergy evaluation of the power plant shows that the losses of the boiler and turbine are considerably larger than those of condenser and feed water heater. Most irreversible losses of the power plant occur at the boiler. For improving the performance, the precise study about the irreversible losses of the boiler is necessary.

  • PDF