• Title/Summary/Keyword: Power Plant Park

Search Result 1,381, Processing Time 0.031 seconds

Molecular Breeding for Plant Disease Resistance : Prospects and Problems

  • Park, Hyo-Guen
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The technique of plant transformation has started to show off its great power in the area of plant breeding by commercially successful introduction of transgenic varieties such as herbicide tolerant soybean and insect resistant corn in USA with an unimaginable speed. However, in contrast with the great success in the commercialization of herbicide tolerance and insect resistance, the transformation works on disease resistance has not yet reached the stage of full commercialization. This review surveys the current status of molecular breeding for plant disease resistance and their limits and problems. Some novel ideas and approaches in molecular breeding for disease resistance are introduced.

  • PDF

A Fundamental Research for Adaptation Method of SCM in Korean Nuclear Power Plant Construction (원전 건설공사를 위한 공급망관리체계 적용방안에 대한 기초연구)

  • Park, Hang-Soon;Won, Seo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.229-231
    • /
    • 2012
  • The supply chain in plant construction project can be defined as a network combined between elements which is engineering, procurement, construction, start-up. For successfully leading construction project, close relation and mutual cooperation should be preceded and Supply Chain Management(SCM) system is needed to improve the relation. In particular, because safety is a top priority for the companies work in the construction of Nuclear Power Plant(NPP), it is necessary to control all parties realated with NPP construction systematically. In this situation, it is important to purchase high-quality equipment in timely manner by developing Integrated cooperative systems. Therefore, this study aimed to propose developing solutions of SCM such as JIT and Envelop Design system, which can reduces difficulties of decision making between the parties involved in the project and will increase the efficiency of the engineering process in NPP.

  • PDF

Management in the EPC Business for Overseas Power Plant Projects (해외 발전플랜트 EPC 사업의 리스크 분석 및 관리방안)

  • Park, Euiseung;Yoo, Hoseon;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.7 no.3
    • /
    • pp.48-64
    • /
    • 2011
  • In this work, risks in EPC project for overseas power plant projects are analyzed and risk management methods are suggested to reduce cost and to shorten time. 79% of risks occurred in the engineering phase for S project located in South-East Asia. The impact scales of risks on major project objectives which are cost, time, scope, and quality are analyzed as 3.5, 3.8, 2.7, and 3.7, respectively. The level of impact scales is very similar to each other except the impact scale of scope. The risk management methods suggested in this study have to be applied at the appropriate time to manage risks effectively. After that, risks are managed continuously by monitoring.

  • PDF

Failure Analysis on High Pressure Steam Piping of 500 MW Thermal Power Plant (500 MW 화력발전소 고압 증기 배관 손상 원인 분석)

  • Kim, Jeongmyun;Jeong, Namgeun;Yang, Kyeonghyun;Park, Mingyu;Lee, Jaehong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The 500 MW Korean standard coal-fired power plant is the largest standardized power plant in Korea and has played a pivotal role in domestic power generation for over 20 years. In addition to the aging degradation due to long term operation, the probability of failure of power generation facilities is increasing due to frequent startup and stop caused by the lower utilization rate due to air pollution problem caused by coal-fired power plants. Among them, steam piping plays an important role in transferring high-temperature & pressure steam produced in a boiler to turbine for power generation. In recent years, failure of steam piping of large coal-fired power plant has frequently occurred. Therefore, in this study, failure analysis of high pressure piping weld was conducted. We identify the damage caused by high stress due to abnormal supporting structure of the piping and suggest improved supporting structure to eliminate high stress through microstructure analysis and piping stress analysis to prevent the occurrence of the similar failure of other power plant in the case of repetitive damage to the main steam piping system of the 500 MW Korean standard coal-fired power plant.

A Case Study on Human Errors in Thermal Power Plant (화력발전소에서의 인적오류 사례 및 개선방안)

  • Park, Young-Kyu;Chun, Sang-Ki;Kim, Bong-Bin;Kim, Yoon-Kyong;Jung, Chang-Woo
    • IE interfaces
    • /
    • v.21 no.3
    • /
    • pp.247-253
    • /
    • 2008
  • There are various types of unexpected troubles in service of a thermal power plant, which consists of many complicated high-tech mass equipments. The troubles are mostly caused by the manufacturing defects, the material deteriorations, the human errors, and others. Failures of its system due to the troubles, can bring on the extravagant economic loss and the qualitative degradation of electricity. Especially, it is most important to find a way to decrease human errors because it can result in not only the economic loss, but also morale declination of employees or the department related to the trouble. Therefore, we categorize previous troubles related to the human errors, and try to show the causations and the counter-measures based on the various categories such as maintenance, an operation, and system of the thermal power plants.

Application of Event Tree Technique for Quantification of Nuclear Power Plant Safety (원자력발전소의 정량적인 안전 해석을 위한 사건수목 기법의 응용)

  • Kim, See-Darl;Jin, Young-Ho;Kim, Dong-Ha;Park, Soo-Yong;Park, Jong-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.126-135
    • /
    • 2000
  • Probabilistic Safety Assessment (PSA) is an engineering analysis method to identify possible contributors to the risk from a nuclear power plant and now it has become a standard tool in safety evaluation of nuclear power plants. PSA consists of three phases named as Level 1, 2 and 3. Level 2 PSA, mainly focused in this paper, uses a step-wise approach. At first, plant damage states (PDSs) are defined from the Level 1 PSA results and they are quantified. Containment event tree (CET) is then constructed considering the physico-chemical phenomena in the containment. The quantification of CET can be assisted by a decomposition event tree (DET). Finally, source terms are quantitatively characterized by the containment failure mode. As the main benefit of PSA is to provide insights into plant design, performance and environmental impacts, including the identification of the dominant risk contributors and the comparison of options for reducing risk, this technique is expected to be applied to the industrial safety area.

  • PDF

C-rate based electrical characteristics and equivalent circuit modeling of 18650 cylindrical Li-ion battery for nuclear power plant application (원전 비상전원 적용성 판단을 위한 다양한 C-rate 기반 원통형 리튬이온 배터리의 전기적 특성분석 및 모델링)

  • Kim, Gunwoo;Park, Seongyun;Park, Jinhyeong;Kim, Jonghoon;Park, Sungbaek;Kim, Youngmi
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.667-674
    • /
    • 2019
  • The recent incidents of Nuclear Power Plant(NPP) gave rise to a total power outage caused by the loss of the functions of the off-site and the emergency power supply. Currently, emergency power supply of NPP have been taken into account by Li-ion batteries instead of existing lead-acid batteries. In order to judge the applicability of the cylindrical Li-ion battery, it is necessary to analysis the results of various electrical tests. This paper investigates the basic electrical characteristics test of three types of cylindrical batteries in order to select the most suitable battery and estimate state of battery through equivalent circuit model and propose method to solve the problem.

The Effects of Seismic Failure Correlations on the Probabilistic Seismic Safety Assessments of Nuclear Power Plants (지진 손상 상관성이 플랜트의 확률론적 지진 안전성 평가에 미치는 영향)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil;Jeon, Bub-Gyu;Park, Dong-Uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • Nuclear power plant's safety against seismic events is evaluated as risk values by probabilistic seismic safety assessment. The risk values vary by the seismic failure correlation between the structures, systems, and components (SSCs). However, most probabilistic seismic safety assessments idealized the seismic failure correlation between the SSCs as entirely dependent or independent. Such a consideration results in an inaccurate assessment result not reflecting real physical phenomenon. A nuclear power plant's seismic risk should be calculated with the appropriate seismic failure correlation coefficient between the SSCs for a reasonable outcome. An accident scenario that has an enormous impact on a nuclear power plant's seismic risk was selected. Moreover, the probabilistic seismic response analyses of a nuclear power plant were performed to derive appropriate seismic failure correlations between SSCs. Based on the analysis results, the seismic failure correlation coefficient between SSCs was derived, and the seismic fragility curve and core damage frequency of the loss of essential power event were calculated. Results were compared with the seismic fragility and core damage frequency of assuming the seismic failure correlations between SSCs were independent and entirely dependent.

An Application of a PLC to a control System for a Dual Tower Drier in Nuclear Power Plant (PLC를 이용한 Dual Tower Drier 운전 적용에 관한 연구)

  • Park, Jong-Beom;Park, Ik-Soo;Cho, Whang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2321-2323
    • /
    • 1998
  • A control system using a PLC has been developed for a dual tower drier(DTD) in a CANDU type nuclear power plant. This system will replace the existing DTD control system which was implemented with mechanical timers and relays. The new control system makes it possible for an operator to perform more precise time and dew point control for the DTD, thanks to the high efficiency and flexibility of the PLC. The operational cost for the control system is much reduced compared to the existing system.

  • PDF

LOSS OF OFFSITE POWER TEST EXPERIENCE FOR YGN 4

  • Chi, Sung-Goo;Sung, Kang-Sik;Kim, Se-Chang;Kim, Eul-Ki;Eom, Young-Meen;Park, Young-Boo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.230-234
    • /
    • 1995
  • The loss of offsite power test was successfully performed on YGN 4 to demonstrate that the reactor can be shutdown and the RCS can be maintained in a hot standby condition following a loss of all offsite Alternating Current (AC) power. Following the loss of main generator and all offsite AC power, the ensile emergency diesel generators were automatically started and the plant was stabilized via natural circulation. Plant conditions were maintained in hot standby for at least 30 minutes before offsite power was restored. Thus, the capability of equipment, controls and instrumentation necessary to remove decay heat from the core using only ensile emergency power was demonstrated, thereby satisfying all objectives and acceptance criteria of the test.

  • PDF