• Title/Summary/Keyword: Power Performance Curve

Search Result 291, Processing Time 0.026 seconds

A Power Control Scheme of a Fuel Cell Hybrid Power Source

  • Song, Yu-Jin;Han, S.B.;Park, S.I.;Jeong, H.G.;Jung, B.M.;Kim, G.D.;Yu, S.W.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.183-187
    • /
    • 2008
  • This paper describes a power control scheme to improve the performance of a fuel cell battery hybrid power source for residential application. The proposed power control scheme includes a power control strategy to control the power flow of the fuel cell hybrid power system and a digital control technique for a front-end dc-dc converter of the fuel cell. The power control strategy enables the fuel cell to operate within the high efficiency region defined by the polarization curve and efficiency curve of the fuel cell. A dual boost converter with digital control is applied as a front-end dc-dc converter to control the fuel cell output power. The digital control technique of the converter employs a moving-average digital filter into its voltage feedback loop to cancel the low frequency harmonic current drawn from the fuel cell and then limits the fuel cell output current to a current limit using a predictive current limiter to keep the fuel cell operation within the high efficiency region as well as to minimize the fuel cell oxygen starvation.

  • PDF

A study on the effect of flat plate friction resistance on speed performance prediction of full scale

  • Park, Dong-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.195-211
    • /
    • 2015
  • Flat plate friction lines have been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996), and the curve developed by Katsui et al. (2005). In the second part, change in the form factor by three kinds of friction resistance curves was investtigated based on model tests, and then the brake power and the revolution that were finally determined by expansion processes of full-scale ships. When three kinds of friction resistance curves were applied to each kind of ships, these were investigated: differences between resistance and self-propulsion components induced in the expansion processes of full-scale ships, correlation of effects between these components, and tendency of each kind of ships. Finally, what friction resistance curve was well consistent with results of test operation was examined per each kind of ships.

Performance Prediction of Main Coolant Pump in Integral Reactor SMART (일체형원자로 SMART 냉각재순환펌프의 성능예측)

  • Kim Min-Hwan;Park Jin-Seok;Kim Jong-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.118-125
    • /
    • 2001
  • The performance prediction of SMART MCP was performed using a computational fluid dynamics code. General capacity-head performance curve of MCP, which is provided to other design branches as design input, was obtained and it showed the typical type of axial pump performance curve. When four MCPs operate in parallel and one of them stops while the others continue to operate, SMART requires reduced power operation. A procedure for predicting the performance of SMART MCP for that case was developed and verified with available experimental data. An analysis based on the developed procedure was performed for two cases; the impeller of sloped MCP is fixed or free to rotate in reverse direction. According to the results, $73\%$ flow rate of normal operation enters the reactor core in the case of the locked impeller. In case of the impeller free rotation, the flow rate entering the reactor core is $62.8\%$.

  • PDF

Integrating physics-based fragility for hierarchical spectral clustering for resilience assessment of power distribution systems under extreme winds

  • Jintao Zhang;Wei Zhang;William Hughes;Amvrossios C. Bagtzoglou
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Widespread damages from extreme winds have attracted lots of attentions of the resilience assessment of power distribution systems. With many related environmental parameters as well as numerous power infrastructure components, such as poles and wires, the increased challenge of power asset management before, during and after extreme events have to be addressed to prevent possible cascading failures in the power distribution system. Many extreme winds from weather events, such as hurricanes, generate widespread damages in multiple areas such as the economy, social security, and infrastructure management. The livelihoods of residents in the impaired areas are devastated largely due to the paucity of vital utilities, such as electricity. To address the challenge of power grid asset management, power system clustering is needed to partition a complex power system into several stable clusters to prevent the cascading failure from happening. Traditionally, system clustering uses the Binary Decision Diagram (BDD) to derive the clustering result, which is time-consuming and inefficient. Meanwhile, the previous studies considering the weather hazards did not include any detailed weather-related meteorologic parameters which is not appropriate as the heterogeneity of the parameters could largely affect the system performance. Therefore, a fragility-based network hierarchical spectral clustering method is proposed. In the present paper, the fragility curve and surfaces for a power distribution subsystem are obtained first. The fragility of the subsystem under typical failure mechanisms is calculated as a function of wind speed and pole characteristic dimension (diameter or span length). Secondly, the proposed fragility-based hierarchical spectral clustering method (F-HSC) integrates the physics-based fragility analysis into Hierarchical Spectral Clustering (HSC) technique from graph theory to achieve the clustering result for the power distribution system under extreme weather events. From the results of vulnerability analysis, it could be seen that the system performance after clustering is better than before clustering. With the F-HSC method, the impact of the extreme weather events could be considered with topology to cluster different power distribution systems to prevent the system from experiencing power blackouts.

Study on Power Analysis and Test Verification for STSAT-2 Solar Array (과학기술위성 2호 태양전지 배열기의 전력 성능 분석 및 시험 검증 연구)

  • Park, Je-Hong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.507-517
    • /
    • 2010
  • The KOREAN AIR - R&D Center has developed a solar array for STSAT-2 Flight Model, SaTReC-KAIST, using a fully localized technology and has verified the performance through a launch vibration test, orbit environment test and electrical performance test. The solar array will be launched at NARO Space Center by KSLV-I which is the first Korean launch vehicle, in May 2010. In this paper, a current-voltage curve that shows the power characteristics of solar arrays was derived by applying elements that affects the power performance of STSAT-2's solar arrays to the solar cell equivalent models. The result was compared to LAPSS test results, and accuracy of the solar cell equivalent model and the power performance simulation has been analyzed.

Impedance-based generalized and phenomenon-reflective simulation model of Li-ion battery for railway traction applications

  • Abbas, Mazhar;Cho, Inho;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.459-460
    • /
    • 2019
  • The performance dynamics of battery is very sensitive to operating conditions (i.e temperature, load current, and state of charge). A model developed based on certain conditions may perform well under the similar conditions but can not accurately predict the performance for changing conditions. Thus, a generalized model is needed which can accurately emulate the battery dynamic behavior under all conditions. In addition, the components of the model should relate to the physicochemical processes that occur inside the battery. Electrochemical impedance curve shows better visible reflection of the processes inside battery as compared to voltage curve. The model trained for parameterization using neural network has better generalization than simple curve fitting. Thus, this study proposes recurrent neural network based parameterization of the Lithium ion battery model followed by impedance based identification.

  • PDF

A Novel Parameter Extraction Method for the Solar Cell Model (새로운 태양전지 모델의 파라미터 추출법)

  • Kim, Wook;Kim, Sang-Hyun;Lee, Jong-Hak;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.372-378
    • /
    • 2009
  • With the increase in capacity of photovoltaic generation systems, studies are being actively conducted to improve system efficiency. In order to develop the high performance photovoltaic power system it is required to understand the physical characteristics of the solar cell. However, solar cell models have a non-linear form with many parameters entangled and conventional methods suggested to extract the parameters of the solar cell model require some kind of assumptions, which accompanies the calculation errors, thereby lowering the accuracy of the model. Therefore, in this paper a novel method is proposed to calculate the ideality factor and reverse saturation current of the solar cell from the I-V curve measured and announced by solar cell manufacturers, derive the ideal I-V curve, and then extract the series and shunt resistances value from the difference between the ideal and measured I-V curve. Also, validity of the proposed method is demonstrated by calculating the correlation between I-V curve based on modeling parameters and I-V curve actually measured through least squares method.

A Novel Grid-Connected PV PCS with New High Efficiency Converter

  • Min, Byung-Duk;Lee, Jong-Pil;Kim, Jong-Hyun;Kim, Tae-Jin;Yoo, Dong-Wook;Ryu, Kang-Ryoul;Kim, Jeong-Joong;Song, Eui-Ho
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.309-316
    • /
    • 2008
  • In this paper, new topology is proposed that can dramatically reduce the converter power rating and increase the efficiency of total PV system. Since the output voltage of PV module has very wide voltage range, in general, the DC/DC converter is used to get constant high DC voltage. According to analysis of PV characteristics, in proposed topology, only 20% power of total PV system power is needed for DC/DC converter. DC/DC converter used in proposed topology has flat efficiency curve at all load range and very high efficiency characteristics. The total system efficiency is the product of that of converter and that of inverter. In proposed topology, because the converter efficiency curve is flat all load range, the total system efficiency at the low power range is dramatically improved. The proposed topology is implemented for 200kW PCS system. This system has only three DC/DC converters with 20kW power rating each other. It is only one-third of total system power. The experiment results show that the proposed topology has good performance.

Adaptive Partial Shading Determinant Algorithm for Solar Array Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1566-1574
    • /
    • 2019
  • Maximum power point tracking (MPPT) under the partial shading condition is a challenging research topic for photovoltaic systems. Shaded photo-voltaic module result in complex peak patterns on the power versus voltage curve which can misguide classical MPPT algorithms. Thus, various kinds of global MPPT algorithms have been studied. These have typically consisted of partial shading detection, global peak search and MPPT. The conventional partial shading detection algorithm aims to detect all of the occurrences of partial shading. This results in excessive execution of global peak searches and discontinuous operation of the MPPT. This in turn, reduces the achievable power for the PV module. Based on a theoretical investigation of power verse voltage curve patterns under various partial shading conditions, it is realized that not all the occurrences of partial shadings require a global peak search. Thus, an intelligent partial shading detection algorithm that provides exact identification of global peak search necessity is essential for the efficient utilization of solar energy resources. This paper presents a new partial shading determinant algorithm utilizing adaptive threshold levels. Conventional methods tend to be too sensitive to sharp shading patterns but insensitive to smooth patterns. However, the proposed algorithm always shows superb performance, regardless of the partial shading patterns.

Performance Comparison of Two Wind Turbine Generator Systems Having Two Types of Control Methods

  • Saito, Sumio;Sekizuka, Satoshi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.92-101
    • /
    • 2009
  • The purpose of this paper is to gain a greater understanding of the performance of practical wind turbine generating systems with differing output power controllers and controlling means for wind turbine speed. Subjected wind turbines, both equipped with an asynchronous power generator, are located at two sites and are defined as wind turbine A and wind turbine B in this study, respectively. Their performance differences are examined by measuring wind speed and electric parameters. The study suggests that both wind turbines have a clear linkage between current and output power fluctuations. Comparison of the fluctuations to wind speed fluctuation, although they are triggered primarily by wind speed fluctuation, clearly indicates the specific behaviors inherent to the respective turbine control mechanisms.