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ABSTRACT Qhargelpischarge Voltqge Con]parisorll

The performance dynamics of battery is very sensitive to Charge
operating conditions (i.e temperature, load current, and state 4.2 i
of charge). A model developed based on certain conditions _ 4:'*%..
may perform well under the similar conditions but can not % ."::Z:::. .
accurately predict the performance for changing conditions. 238 B
Thus, a generalized model is needed which can accurately Es.sf ) ]
emulate the battery dynamic behavior under all conditions. e, %
In addition, the components of the model should relate to 3.4r ...".‘:...
the physicochemical processes that occur inside the battery. 2zl ‘ |
Electrochemical impedance curve shows better visible ! ! | ‘ LI
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reflection of the processes inside battery as compared to
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voltage curve. The model trained for parameterization using

Figure 1. Charge and discharge voltage curves. The

neural network has better generalization than simple curve difference between curves is large.
fitting. Thus, this study proposes recurrent neural network
based parameterization of the Lithium ion battery model 2.Comparison between Impedance curves and
followed by impedance based identification DC curves
1.Introduction 2.1 Sensitivity of DC curves to state of cycle
DC pulse based identification of model mostly uses the

The requirement of electric vehicles for high energy discharge curve of battery. For most of the batteries, the
density has brought tremendous improvement in li-ion discharge curve is significantly different from the charge
batteries since the commercialization of first battery in the curve. As a reference, the charge and discharge voltage
90s'". Batteries based on li-ion chemistries are already in curve for li-ion battery ‘LG 18650 HEA' are shown in Figure
operation in electric vehicles due to high gravimetric energy 1. A model identified based on the charge state will be
density and reasonable cycle life”. To predict and assess definitely different from that of discharge state. In such
the performance of Li-ion batteries in propulsion systems, cases, the complexity of the model increases because a
models become necessary. Although there are many models separate model is required for each state.
available in the literature, but most of those models are On the other hand, there is little difference between the
identified based on DC pulse technique”’. An  alternative impedance spectra of charge state and discharge state if
approach for identifying the models of batteries is the values are taken for the same level of state of charge
mapping of electrochemical impedance spectroscopy (EIS) (SOC). The EIS spectra for ‘LG 18650 HE4 is shown in
curve. Essentially, the simulated data using EIS-based Figure 2. Since the impedance spectra at two different
models is in excellent agreement with the measured data. states of cycle are same, so the models identified using
Such models can also be used in a detailed thermal battery either of the curve will be same. Thus, EIS enables the
design. Most commonly, the EIS technique consists in generalization of the battery models and generalized models
applying to the battery a voltage of certain amplitude and are simple in computation.
frequency and measuring its current response;  the The DC curve does not provide visible reflection of
procedures  repeated for a range of frequencies and the individual polarizations taking place inside battery. In case of
impedance  spectrum of the tested battery is obtained. EIS curve, the ohmic polarization, activation polarization and
Impedance curves can be easily interpreted as reflection of concentration polarization can be observed apparently due to
processes inside battery. Contrary to simple curve fitting frequency dependency of impedance curve. For instance, the
based parameterization, parameterization based on neural resistive behavior is estimated at zero frequency range.

network training provides better generalization.

- 459 -



0.015 Charge/Discharge EIS Comparison

0.01

0.005

Ohm

* -0.005

Zreal

-0.015

-0.02 -

-0.025 . .
0.015 0.02 0.025 0.03
minusZim-Ohm
Figure 2. Impedance spectra for charge and discharge
state. Impedance curves are almost same.
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Figure 3. OCV reading for same SOC points with different
discharge rates

2.2 Limitations of the EIS curve.

EIS curve does not provide any information about the
open circuit voltage (OCV) of the battery. The OCV is
estimated using the DC pulse technique. OCV curve for ‘LG
18650 HE4 ' is shown in Figure 3. The OCV reading also
differs with different conditions of temperature, SOC, DC
pulse rate if rest time is not adjusted properly. As shown in
Figure 3, the OCV values are different for different c-rates,

because rest time is not adjusted according to c-rate.

3.Proposed Parametrization Method

Most of the parametrization methods used the simple
curve fitting techniques. This study proposes an intelligent
mapping algorithm for modeling OCV and extracting values

for circuit elements. The algorithm is shown in Figure 4.

4.Conclusion

The DC pulse technique based parameterization was
factually compared with EIS based parameterization and for
improved generalization of model, a method was proposed

for EIS based parameterization.
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Figure 4. (a). Extraction of parameters for SOC to 0CV

mapping (b). Extraction of values for circuit
parameters
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