• 제목/요약/키워드: Power Performance Curve

검색결과 291건 처리시간 0.033초

6kW 풍력발전기의 출력곡선 측정 (Power Curve Measurements on the 6kW Wind Turbine)

  • 유능수;남윤수;이정완;조주석
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.149-157
    • /
    • 2005
  • The power performance monitoring system for a small class of wind turbine is established. The wind turbine power performance characteristics are determined by measured power curve and the estimated annual energy production (AEP). The measured power curve is determined by collecting simultaneous measurements of wind speed and power output at the test site under varying wind conditions. In order to determine the power performance characteristics of the wind turbine accurately, the data are of sufficient quantity and quality shall be corrected according to defined criteria. In this study, the 6kW wind turbine made by Germany Inventus GmbH is examined.

  • PDF

3MW 풍력발전시스템 출력성능평가에 관한 연구 (The Power Performance Testing for 3MW Wind turbine System)

  • 고석환;장문석;박종포;이윤섭
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.19-26
    • /
    • 2011
  • We are carried out power performance testing for 3MW wind turbine system at Je-ju wind turbine testing Site and analyzed measured data which was stored through monitoring system. In this paper, we described the power performance testing results and analyzed an uncertainty of measured data sets. The power curve with measured power data is closely coincide with designed power curve except for the low wind speed sections(4m/s~7m/s) and the annual energy production which is given Ray leigh distribution was included with 1.5~5.9% of uncertainty in the wind speed region as 4~11m/s. Although the deviation of curve between measured power and designed power is high, the difference of annual energy production is low in the low wind speed region.

나셀 변환 함수를 이용한 풍력터빈 출력성능평가 (Wind Turbine Power Performance Testing using Nacelle Transfer Function)

  • 김현우;고경남;허종철
    • 한국태양에너지학회 논문집
    • /
    • 제33권4호
    • /
    • pp.51-58
    • /
    • 2013
  • A study on power performance testing of a wind turbine which has no met-mast at a distance of 2~4 rotor diameter was carried out using the Nacelle Transfer Function, NTF, according to IEC 61400-12-2. The wind data for this study was measured at HanKyoung wind farm of Jeju Island. The NTF was modeled using the correlation between wind speeds from the met-mast and from the wind turbine nacelle within 2~4 rotor diameter from the met-mast. The NTF was verified by the comparison of estimated Annual Energy Productions, AEPs, and binned power curves. The Nacelle Power Curve, NPC, was derived from the nacelle wind speed data corrected by NTF. The NPC of wind turbine under test and the power curve offered by the turbine manufacturer were compared to check whether the wind turbine is properly generating electricity. Overall the NPC was in good agreement with the manufacturer's power curve. The result showed power performance testing for a wind turbine which has no met-mast at a distance of 2~4 rotor diameter was successfully carried out in compliance with IEC 61400-12-2.

풍력발전기 출력성능 평가에 대한 연구 (The Study about Performance Test of Wind turbine)

  • 고석환;장문석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1348-1349
    • /
    • 2011
  • In this paper, The case of power performance test for 3MW wind-turbine system is introduced. For the verification of power curve and the certification of wind-turbine, power performance test is very important. This paper described the power testing results of a 3MW wind turbine and analysed an uncertainty about the testing. The measured power curves are very closely coincide with the calculated. Total uncertainty of measured data for Power Curve is 120~200kW in the rated power.

  • PDF

풍력발전기 너셀에 장착된 풍속계를 이용한 출력성능 평가 (Evaluation of Power Performance by Anemometer on WTGS)

  • 김수상;박세광
    • 센서학회지
    • /
    • 제21권4호
    • /
    • pp.303-310
    • /
    • 2012
  • We carried out the power performance evaluation for 1.5 MW${\times}$2 by using anemometer installed on WTGS(Wind Turbine Generator System) in the wind farm at Shi-hwa bang-a-mu-ri. In this paper, we compared and analyzed the performance of guaranteed output and measured output of WTGS which includes output curve, output coefficient, AEP(Annual Energy Product) and availability, etc.. The power performance of WTGS was optimized in the low wind speed sections(3 m/s ~ 10 m/s) and the measured output was more produced by AEP 109 % and availability 112 % than the guaranteed output. In addition, we could also cut the high cost of testing WTGS performance by using anemometer as a substitute for weather mast.

풍력단지 출력 검증을 위한 기상탑의 최적위치 선정 (Optimal Location of Meteorological Mast for Power Curve Verification of Wind Farm)

  • 오기용;이준신;박준영;이재경;김지영
    • 신재생에너지
    • /
    • 제5권2호
    • /
    • pp.31-38
    • /
    • 2009
  • The performance test of a wind turbine in a wind farm is generally carried out by the owner to verify the power curve of the wind turbine given by the turbine manufacturer. The international electro-technical commission provides the IEC 61400-12-1 standard on "Power performance measurements of electricity producing wind turbines". By using this code, one can easily find the suitable met-mast (meteorological mast) location for the wind data whether a wind farm is potential or already built. In this paper, the valid sectors for wind turbines installed in the HanKyoung wind farm, south-west in Jeju island are analyzed on the basis of the code by considering the wind farm layout. Among these sectors, the optimal met-mast location is presented for the power curve verification of the wind farm.

  • PDF

U50 풍력발전기 출력성능 실증연구 (The Field Test of Power Performance Measurement for U50 Wind Turbine)

  • 황진수;장성태;김대현;방조혁;류지윤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.372-375
    • /
    • 2007
  • 750kW gearless type wind turbine, named U50, is developed by UNISON in Korea. The newly developed wind turbine should be evaluated the power curve and the estimated annual energy production by following international standard to verify the power performance characteristics. This paper shows the test and evaluation procedure according to IEC 61400-12-1 which specifies a procedure of measuring the power performance characteristics of a single wind turbine and applies to the testing of wind turbines of all types and sized connected to the electrical power network. And this paper also shows the power performance characteristics for U50 wind turbine which is determined in accordance with IEC regulation.

  • PDF

풍력터빈 성능 검증을 위한 출력측정 유효영역 선정 (Selection of Available Sector to Measure Power Generation for Validation of Wind Turbine Performance)

  • 오기용;정훈;이준신
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2009
  • Power generation of wind turbine which is installed in wind farm should be measured to predict economic feasibility of wind farm. Also electric power company want to verify wind turbine performance which is stated by manufacturer. The International Electrotechnical Commission(IEC) published 61400-12-1 "Power performance measurements of electricity producing wind turbines" for test of wind turbine power performance. In this paper, measurable sector of wind speed is analysed based on IEC 61400-12-1 to verify power curve of wind turbine with various wind turbine in wind farm.

  • PDF

측정 출력곡선과 기상자료를 이용한 소형 풍력발전기 연간 발전량 비교평가 (Measured AEP Evaluations of a Small Wind Turbine using Measured Power Curve & Wind Data)

  • 김석우
    • 한국태양에너지학회 논문집
    • /
    • 제33권6호
    • /
    • pp.32-38
    • /
    • 2013
  • In an efforts to encourage renewable energy deployment, the government has initiated so called 1 million green homes program but the accumulated installation capacity of small wind turbine has been about 70kW. It can be explained in several ways such that current subsidy program does not meet public expectations, economic feasibility of wind energy is in doubt or acoustic emission is significant etc. The author investigated annual energy production of Skystream 3.7 wind turbine using measured power curve and wind resource data. The measured power curve of the small wind turbine was obtained through power performance tests at Wol-Ryoung test site. AEP(Annual Energy Production) and CF(Capacity Factor) were evaluated at selected locations with the measured power curve.

B-spline 곡선을 power 기저형태의 구간별 다항식으로 바꾸는 Direct Expansion 알고리듬 (A Direct Expansion Algorithm for Transforming B-spline Curve into a Piecewise Polynomial Curve in a Power Form.)

  • 김덕수;류중현;이현찬;신하용;장태범
    • 한국CDE학회논문집
    • /
    • 제5권3호
    • /
    • pp.276-284
    • /
    • 2000
  • Usual practice of the transformation of a B-spline curve into a set of piecewise polynomial curves in a power form is done by either a knot refinement followed by basis conversions or applying a Taylor expansion on the B-spline curve for each knot span. Presented in this paper is a new algorithm, called a direct expansion algorithm, for the problem. The algorithm first locates the coefficients of all the linear terms that make up the basis functions in a knot span, and then the algorithm directly obtains the power form representation of basis functions by expanding the summation of products of appropriate linear terms. Then, a polynomial segment of a knot span can be easily obtained by the summation of products of the basis functions within the knot span with corresponding control points. Repeating this operation for each knot span, all of the polynomials of the B-spline curve can be transformed into a power form. The algorithm has been applied to both static and dynamic curves. It turns out that the proposed algorithm outperforms the existing algorithms for the conversion for both types of curves. Especially, the proposed algorithm shows significantly fast performance for the dynamic curves.

  • PDF