• Title/Summary/Keyword: Power Module

Search Result 2,692, Processing Time 0.037 seconds

Design and fabrication of SSPA module in X-band for Radar (X-대역 레이더용 SSPA 모듈 설계 및 제작)

  • Yang, Seong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.943-948
    • /
    • 2018
  • In this paper, SSPA Module for X-band radar was designed and fabricated by using GaN MMIC. For the purpose of configuring the high power SSPA module, the drive steamers are composed of 2-layers of GaN MMIC with considering Gain Loss. In addition, the power divider and power combiner used a 4way approach by designing a 4-stage power amplifier. The power divider has a loss of -3.0dB or more, and the I/O has a loss of -0.2dB in the power combiner and the phase difference between the ports are good at $2^{\circ}$ on average. The fabricated SSPA module got the measurement results that satisfy a Gain 48dB, P(sat)=88.3W(49.46 dBm), PAE=30.3% or more efficiency in condition of frequency range 9~10GHz. The fabricated X-Band SSPA module can be applied in RF performance improvement for SSPA module whit improvement of power divider/combiner.

Experimental Study on the Power Generation of a Thermoelectric Module with Temperature Difference and Load Resistance (온도차 및 부하 저항에 따른 열전모듈의 발전 특성 분석)

  • Lee, Kong-Hoon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1942-1947
    • /
    • 2007
  • A thermoelectric module can be used for cooling or power generation. The basic requirements to achieve a significant thermoelectric performance are the same for both generators and coolers. Thermoelectric modules with $Bi_2Te_3$ materials are usually employed in the cooling applications below room temperature but it can also be used for the power generation in the similar temperature range. In the present study, the power generation with a $Bi_2Te_3$ thermoelectric module has been investigated. The temperature difference between the hot and cold sides of the module is maintained with electric heater and cold water from the circulating water bath. The result shows that the electric current generated increases with temperature difference and decreases with the load resistance. However, the voltage increases with both the temperature difference and load resistance. The electric power increases with temperature difference and it has the maximum value when the load resistance is about 4 ${\Omega}$ for a given device.

  • PDF

Power Management Circuit for Solar cell Powered Wireless Sensor Nodes (태양전지를 전원으로 사용하는 무선센서 노드를 위한 전원관리회로)

  • Kang, Sung-Muk;Park, Kyung-Jin;Kim, Ho-Seong;Park, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1925_1926
    • /
    • 2009
  • This paper describes a novel power management circuitry for reducing the sleeping mode power dissipation. Based on the proposed power management circuitry, the sensor module can be activated by RF wake-up signal, perform designated process and deactivate itself. There is absolutely no power dissipation at the sleeping mode which takes almost time of the operation. The temperature sensor module using solar cell as energy source has been fabricated and tested. Experimental results show that the sensor module with 3300 ${\mu}$F for storage capacitor can transmits RF temperature data to a receiver at a distance of 20 m every 15 second in a normal indoor light condition and keep the capacitor voltage over 9 V. And the sensor module can operate 100 times with a single charging, that means it is possible for the sensor module to transmit every 5 minute for 8 hours without light or any other power input during the night time.

  • PDF

A System Dynamics Approach for Valuing Nuclear Power Technology (System Dynamics를 이용한 원자력발전의 기술가치 평가)

  • Lee, Yong-Suk
    • Korean System Dynamics Review
    • /
    • v.7 no.2
    • /
    • pp.57-80
    • /
    • 2006
  • Nuclear technology made a great contribution to the national economy and society by localization of nuclear power plant design, and by stabilization of electricity price, etc. It is very important to conduct the retrospective analysis for the nuclear technology contribution to the national economy and society, but it is more important to conduct prospective analysis for the nuclear technology contribution. The term "technology value" is often used in the prospective analysis to value the result of technology development. There are various definitions of technology value, but generally it means the increment of future revenue or the reduction of future cost by technology development. These technology valuation methods are widely used in various fields (information technology or energy technology, etc). The main objective of this research is to develop valuation methodology that represents unique characteristics of nuclear power technology. The valuation methodology that incorporates market share changes of generation technologies was developed. The technology valuation model which consists of five modules (electricity demand forecast module, technology development module, market share module, electricity generation module, total cost module) to incorporate market share changes of generation technologies was developed. The nuclear power technology value assessed by this technology valuation model was 3 times more than the value assessed by the conventional method. So it was confirmed that it is very important to incorporates market share changes of generation technologies. The valuation results of nuclear power technology in this study can be used as policy data for ensuring the benefits of nuclear power R&D (Research and Development) investment.

  • PDF

Educational Simulator for Transmission Network Use of System Charge (송전망 이용요금산정을 위한 교육용 시뮬레이터 개발)

  • Kim, H.H.;Song, H.Y.;Lee, C.J.;Park, J.B.;Shin, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.201-203
    • /
    • 2006
  • This paper presents a graphical windows-based software for the education and training of the transmission network use of system charge. The developed simulator consist of the main module(MMI,GUI), the power flow module(PF), the power flow tracing module(PFT) and management of usage cost DB module(UCD). Each module has a separate graphical and interactive interfacing window. To have effective education for transmission network use of system charge, the developed simulator are provided with two power system analysis methods. Input data of power system can use the format of PSS/E input data. Also calculation of power flow tracing are provided with four methods such as "Felix Wu","Modified Felix Wu", "DCLF ICRP" and "Reverse MW mile". Results of calculation for usage cost are shown on the window through the table or chart. Therefore user can confirm the detailed differences of results from each calculation method.

  • PDF

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Koo, Tae-Geun;Byun, Young-Bok;Joe, Ki-Yeon;Kim, Dong-Hee;Kim, Chul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.44-51
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Further-more, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently. The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3㎸A modules are designed and implemented to confirm the effectiveness of the pro-posed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristics.

Power module stray inductance extraction: Theoretical and experimental analysis

  • Jung, Dong Yun;Jang, Hyun Gyu;Cho, Doohyung;Kwon, Sungkyu;Won, Jong Il;Lee, Seong Hyun;Park, Kun Sik;Lim, Jong-Won;Bae, Joung Hwan;Choi, Yun Hwa
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.891-899
    • /
    • 2021
  • We propose a stray inductance extraction method on power modules of the few-kilovolts/several-hundred-amperes class using only low voltages and low currents. The method incorporates a double-pulse generator, a level shifter, a switching device, and a load inductor. The conventional approach generally requires a high voltage of more than half the power module's rated voltage and a high current of around half the rated current. In contrast, the proposed method requires a low voltage and low current environment regardless of the power module's rated voltage because the module is measured in a turn-off state. Both theoretical and experimental results are provided. A physical circuit board was fabricated, and the method was applied to three commercial power modules with EconoDUAL3 cases. The obtained stray inductance values differed from the manufacturer-provided values by less than 1.65 nH, thus demonstrating the method's accuracy. The greatest advantage of the proposed approach is that high voltages or high currents are not required.

Study on the Peltier Module to Insure the Structural Stability (Peltier module의 구조적 안정성 확보에 관한 연구)

  • Jun, Jong-Hoon;Kim, Jae-Jung;Kim, In-Kwan;Kim, Young-Soon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1144-1149
    • /
    • 2006
  • Electric power is generated by Seeback Effect if there is thermal difference in pettier module. Peltier module is composed by alumina, Bi-Te semiconductor and insulation (or air). If load is increased in pettier module, the alumina of module will be destroyed. One of the preventing method of module destruction is using damper between module and heat source. But the electric Power is dropped because of decrease of thermal difference, if thermal conductivity of damper was tourer than other thermoelectric materials. We design, Polymer Pad for enhancing thermoelectric porter. As the result of these experiment, Polymer Pad is more superior than the Rubber in the stability and thermal conduction.

  • PDF

An Experimental Study of Short Stack on the Performance of the Proton Exchange Membrane Fuel Cell for the Residential Power generation (소형 모듈 스택을 이용한 가정용 연료전지 성능의 실험적 고찰)

  • Choi, Won-Seok;Kim, Yong-Mo;Yu, Sang-Seok;Lee, Young-Duk;Hong, Dong-Jin;Ahn, Kook-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.21-24
    • /
    • 2008
  • Proton Exchange Membrane Fuel Cell (PEMFC) is an attractive candidate for residential power generator due to fast start-up and stop, high efficiency, low emission, and high power density. In this study, we employ short module stack to understand the performance of the unit cell of the stack in terms of operating temperatures. To simulate the practical fuel cell stack of residential power generator, the structure and active area of the short module stack is kept the same as that of the practical fuel cell. The results shows that the electric potential of short module stack is different from the number of cells times the potential of unit cell because of cell-to-cell variation.

  • PDF

Experimental Research for Design of Distributed Power System Protection IED (분산 전원 계통 연계용 보호 IED 설계를 위한 실험 연구)

  • Han, Chul-Wan;Oh, Sung-Nam;Yoon, Ki-Don;Kim, Kab-Il;Son, Young-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.90-92
    • /
    • 2005
  • In this paper, we design a digital protection IED(Intelligent Electric Device) for a distributed power system in connection with power grid. The device can measure various elements for protection and communicate with another devices through network. The protection IED is composed of specific function modules: signal process module which converts analog signal from PT and CT handle algorithm to digital one; communication module for connection with another IEDs; input/output module for user-interfaces; main control module for control the whole modules. A general purpose DSP board with TMS320C2812 is used in the IED. Experiments with the power system simulator DOBLE have been made to verily the proposed hardware system.

  • PDF