• Title/Summary/Keyword: Power Loss Cost

Search Result 406, Processing Time 0.025 seconds

A Study of Failure Mode for 3 Phase VSI by Power Loss Averaging Technique (전력 손실 평균화 기법에 의한 3상 전압형 인버터의 소손 모드에 관한 연구)

  • Cho, S.E.;Park, S.J.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.575-580
    • /
    • 2010
  • This paper is to design an optimum power conversion device for the system required for development of a low cost 3-phase power inverter. For this purpose, in order to meet with endurance required by the industry, failure mode is standardized to guarantee lifetime of a power semiconductor by monitoring real time power loss and to facilitate failure mode analysis. As normality of heat loss of a power semiconductor is identified remaining in a certain range by comparing heat rise slope between that is calculated by using average current or average loss and that is measured at a heat sink, its feasibility is confirmed by experiment.

Evaluation for System Reliability taking into consideration Customer Interruption Cost (수용가 정전비용을 고려한 전력계통 공급신뢰도 평가)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Kim, Ho-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.133-135
    • /
    • 2002
  • It is raised for methodology to evaluate power system reliability using interruption cost which is converted customer loss due to interruption into cost according to power industry is rushed into competition appearance. This paper presents algorithms to evaluate reliability of distribution power system taking into consideration customer interruption cost. Customer interruption cost is considered as one of the valuable index to estimate reliability of the distribution power system from customer situation. Also. this paper estimate evaluation results regarding the reliability of distribution power system using a sample model system. Finally, evaluation results of unserved energy and system interruption cost based on customer interruption cost are shown in detail.

  • PDF

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구)

  • Lee Byung Ha;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

Evaluation of Power Quality Cost Based on Value-Based Methodology and Development of Unified Index (가치산정법에 의한 전력품질비용 산정 및 단일화지수의 개발)

  • Lee, Buhm;Kim, Kyoung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1293-1298
    • /
    • 2011
  • This paper presents an Unified Index which can evaluate a performance of a distribution system based on value-based methodology. Reliability cost and voltage sags cost are calculated for each load point using Reliability Sector Customer Damage Function(SCDF). Aging cost is calculated for each load point using Aging SCDF. Power loss cost and operation cost are calculated for the system. By summation of each cost of load point and system, power quality cost can be obtained. Finally, this paper developed an unified index which can show the performance of a distribution system. Presented method has been applied to a real system, the usefulness of the method has been verified.

The optimal operation condition of heat engine (熱機關의 最適 運轉條件)

  • 정평석;김수연
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.971-974
    • /
    • 1987
  • Considering heat transfer and heat loss processes for the heat engine operating between two fixed heat reservoirs, it may be qualitatively explained that the maxima of power output and its efficiency depending upon operating conditions are extreme maxima. Furthermore, it is also found that from an economic point of view the above two extremes are related to extreme minima of plant cost per unit power output and operation cost per unit power output respectively, and the condition of minimum cost per unit power output exists between the extreme minimum conditions of plant cost per unit power output and that of operation cost per unit power output.

Analysis on Characteristics of Transmission Loss using Marginal Loss Factors Based on the KEPCO's Expected Peak Load Data of Year 2000 (한계손실계수에 의한 한전 예상첨두계통 송전손실 특성 분석)

  • NamKung, Jae-Yong;Choe, Heung-Gwan;Mun, Yeong-Hwan;O, Tae-Gyu;Im, Seong-Hwang;Han, Yong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.7
    • /
    • pp.333-339
    • /
    • 2001
  • The transmission networks are not perfect conductors and a percentage of the power generated is therefore lost before it reaches the loads. This network loss effects to the cost of suppling power to consumers, and must be considered if the most efficient dispatch and location of generators and loads is to be achieved. In this paper, we propose an approximate calculation of marginal loss factors to analyze characteristics of transmission loss of KEPCO power system. These static marginal loss factors are approximately calculated based on the KEPCO's expected summer peak load data of year 2000.

  • PDF

Optimal Capacity and Allocation of Distributed Generation by Minimum Operation Cost in Distribution Systems

  • Shim Hun;Park Jung-Hoon;Bae In-Su;Kim Jin-O
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In the operation of distribution systems, DGs (Distributed Generations) are installed as an alternative to extension and the establishment of substations, transmission and distribution lines according to the increasing power demand. In the operation planning of DGs, determining optimal capacity and allocation achieves economical profitability and improves the reliability of power distribution systems. This paper proposes a determining method for the optimal number, size and allocation of DGs in order to minimize the operation costs of distribution systems. Capacity and allocation of DGs for economical operation planning duration are determined to minimize total cost composed with power buying cost, operation cost of DGs, loss cost and outage cost using the GA (Genetic Algorithm).

A Study on Power Flow and Marginal Factor based on Optimal Power Flow using Nonlinear Interior Point Method under Restructuring Environment (전력산업 구조개편 환경에서 비선형 내점법의 최적조류계산에 의한 전력조류 및 한계계수에 관한 연구)

  • 정민화;남궁재용;권세혁
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.291-298
    • /
    • 2002
  • This paper presents a practical methodology that can analysis power flow and marginal factors based on optimal power flow (OPF) of power systems under restructuring environment. First of all, to evaluate useful marginal factors, nonlinear optimization problems of minimum fuel cost and minimum transmission loss are formulated and solved by nonlinear primal-dual interior point method. Here, physical constraints considered in the optimization problems are the limits of bus voltage. line overloading, and real & reactive power generation. Also, an evaluation method of marginal price and marginal transmission loss is presented based on sensitivities calculated by the two OPF problems. Especially, to reflect the cost related to transmission losses in the competitive electricity market, an analysis method of MLF (marginal loss factor) is pro-posed. Numerical results on IEEE RTS 24 show that the proposed algorithm is effective and useful for analysis of power market price.

Optimal Routing of Distribution Network Considering Reliability Indices (신뢰도 지수를 고려한 배전계통의 최적 전력전송경로 결정)

  • 신동환;노병권;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1073-1080
    • /
    • 1999
  • Optimal routing of distribution networks can be attained by keeping the line power capacity limit to handle load requirements, acceptable voltage at customer loads, and the reliability indices such as SAIFI, SAIDI, CAIDI, and ASAI limits. This method is composed of optimal loss reduction and optimal reliability cost reduction. The former is solved relating to the conductor resistance of all alternative routes, and the latter is solved relating to the failure rate and duration of each alternative route. The routing considering optimal loss only and both optimal loss and optimal reliability cost are compared in this paper. The case studies with 10 and 24 bus distribution networks showed that reliability cost should be considered as well as loss reduction to achieve the optimal routing in the distribution networks.

  • PDF

Assessment of Benefits on Distributed Generation in KOREA (우리나라 전력계통의 분산형 전원에 대한 정량적 편익산정)

  • Kim, Yong-Ha;Kim, Ui-Gyeong;Oh, Seok-Hyun;Kim, Dong-Gun;Lee, Pyong-Ho;Woo, Sung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.686-687
    • /
    • 2011
  • In this paper, the method on calculating benefits of combined heat and power is introduced for standard evaluation in electrical power system. This paper calculates benefits about new national viewpoint and viewpoint of independent power producers and assesses benefits of combined heat and power in Korea and In Seoul national capital area. Benefit costs are composed of avoid cost of centralized generation, line upgrading adjustment, loss adjustment and electrical power trade cost per year in earlier study, in addition trade cost of CO2, construction cost of combined heat and power for accurate calculation. Benefit of combined heat and power is calculated by simulation results of real electrical power system.

  • PDF