• Title/Summary/Keyword: Power Level Control

Search Result 1,734, Processing Time 0.033 seconds

A Simplified Voltage Balancing Method Applied to Multi-level H-bridge Converter for Solid State Transformer (반도체 변압기용 멀티레벨 H-bridge 컨버터에 적용한 간단한 전압 밸런싱 방법)

  • Jeong, Dong-Keun;Kim, Ho-Sung;Baek, Ju-Won;Cho, Jin-Tae;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • A simple and practical voltage balance method for a solid-state transformer (SST) is proposed to reduce the voltage difference of cascaded H-bridge converters. The tolerance device components in SST cause the imbalance problem of DC-link voltage in the H-bridge converter. The Max/Min algorithms of voltage balance controller are merged in the controller of an AC/DC rectifier to reduce the voltage difference. The DC-link voltage through each H-bridge converter can be balanced with the proposed control methods. The design and performance of the proposed SST are verified by experimental results using a 30 kW prototype.

An Improved Voltage Control Scheme for DC-Link Voltage Balancing in a Four-Level Inverter (4-레벨 인버터의 DC-링크 전압 균형을 위한 향상된 전압 제어 기법)

  • Kim, Rae-Yeong;Lee, Yo-Han;Choe, Chang-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.544-554
    • /
    • 1999
  • Multi-level inverters are now receiving widespread interest form the industrial drives for high power variable speed applications. Especially, for the high power variable speed applications, a diode clamped multi-level inverter has been widely used. However, it has the inherent problem that the voltage of the link capacitors fluctuates. This paper describes a voltage control scheme effectively to suppress the DC-link potential fluctuation for a diode clamped four-level inverter. The current to flow from/into the each link capacitor is analyzed and the operation limit is obtained when a conventional SVPWM is used. To overcome the operation limit, a modified carrier-based SVPWM is proposed. Various simulation and experiment results are presented to verify the proposed voltage control scheme for DC-link voltage balancing.

  • PDF

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

Rack-Level DC Power Solution for Volume Servers

  • Kwon, Won-Ok;Seo, Hae-Moon;Choi, Pyung
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.940-949
    • /
    • 2010
  • Rack-level DC power supply is the optimal technology for providing DC power to a volume server without any power infrastructure changes in an existing AC data center. In this paper, we propose a smartly controllable and monitorable DC rack power system. The proposed system improves power efficiency by changing the power distribution architecture of a conventional method in the rack. We developed an optimal power control method in multipower modules to provide high efficiency at low loads. In addition, the proposed system provides real-time web monitoring of the rack power and environment around a rack. In our experiments, the proposed system improved the power efficiency by over 10% compared to an AC power system providing N+1 redundant power and power monitoring.

Distributed Power Control and Removal Algorithms for Multimedia CDMA Wireless Networks

  • Wang, Jui-Teng
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.197-201
    • /
    • 2003
  • We study in this paper both distributed power control and removal algorithms for multimedia CDMA wireless networks. In our study, users can have different data rates as well as different quality of service (QoS) requirements. We derive a necessary and sufficient condition for the fully distributed power control (FDPC) algorithm to find a feasible power set. We also prove that, if the maximal power level is used at the start, then the distributed constrained power control (DCPC) algorithm is equivalent to the FDPC algorithm. For the connection removal algorithm, we prove that the non-reinitialized removal algorithm finds a feasible power set faster and employs smaller power levels than the reinitialized one does. Performances of some connection removal criteria are also studied. Our simulation results reveal that the smallest normalized CIR (SNC) and largest CIR requirement (LCR) criteria result in smaller outage probability than the smallest CIR (SC) criterion in a multimedia environment.

An Optimal Damping Control Algorithm of Direct Two-level Inverter for Miniaturization and Weight Reduction of Auxiliary Power Supply on Railway Vehicle

  • Lee, Chang-hee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2335-2343
    • /
    • 2018
  • This paper proposes an optimal damping control algorithm of the DTI (Direct Two-level Inverter) to miniaturize and reduce the weight of auxiliary power supply for railway vehicles. The conventional auxiliary power supply for railway vehicles uses a DC-DC converter to maintain the inverter input power from the line voltage smoothly. The proposed topology does not use a DC-DC converter for reducing of manufacturing and maintenance costs. It also proposes a DTI topology removed damping resistors that generate ground signal noise in a certain period. At this time, a resonance phenomenon of DC-link voltage occurs due to variation of the inductive load, and a method of controlling the resonance phenomenon of DC-link voltage is required. In order to suppress the resonance phenomenon of the DC-link voltage, at a point before resonance occurs, this paper introduces an algorithm to suppress the resonance phenomenon of DC-link voltage by compensating the resonance component of the q axis voltage of the synchronous reference frame. The proposed algorithm verifies the effect through simulation and experiment.

Control Scheme of Emergency Power Supply for Elevator Emergency Call System (승강기의 비상 통화장치용 비상 전원장치의 충·방전 제어회로)

  • Park, Noh-Sik;Lee, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.40-48
    • /
    • 2015
  • In this paper, battery charging and discharging circuit with a single voltage power supply is proposed. The proposed circuit has the separated current path and charging-monitoring sequence control scheme. In the charging sequence, the proposed 2-level comparator combined with control signal of the micro-processor can control the constant charging current to protect the over current of the battery. Furthermore, the proposed circuit uses a periodic main power switch control to detect the discharging characteristics to estimate the approximated battery life-time. In the experiments, the proposed emergency power supply for emergency call system has 89% efficiency with 98% power factor. And the proposed sequence control scheme is well operated in the designed emergency power system.

A Minimal Resource High-Level Synthesis Algorithm for Low Power Design Automation (저 전력 설계 자동화를 위한 최소 자원 상위 레벨 합성 알고리즘)

  • Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.95-99
    • /
    • 2008
  • This paper proposes a new minimal resource high-level synthesis algorithm for low power design automation. The proposed algorithm executes an efficient approach to minimize the power consumption of the functional units in a circuit during the high level synthesis. In this paper, we visit all control steps one by one to reduce the switching activity in CDFG. The register sharing algorithm determines the minimum register after the life time analysis of all variable. According to property of input signal for functional unit, the proposed method visits all control step one by one and determines the resource allocation with minimal power consumption at each control step in a greedy fashion. The effect of the proposed algorithm has been proved through various filter benchmark to adopt a new scheduling and allocation algorithm considering the low rover.

  • PDF

Research on the Mechanism of Neutral-point Voltage Fluctuation and Capacitor Voltage Balancing Control Strategy of Three-phase Three-level T-type Inverter

  • Yan, Gangui;Duan, Shuangming;Zhao, Shujian;Li, Gen;Wu, Wei;Li, Hongbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2227-2236
    • /
    • 2017
  • In order to solve the neutral-point voltage fluctuation problem of three-phase three-level T-type inverters (TPTLTIs), the unbalance characteristics of capacitor voltages under different switching states and the mechanism of neutral-point voltage fluctuation are revealed. Based on the mathematical model of a TPTLTI, a feed-forward voltage balancing control strategy of DC-link capacitor voltages error is proposed. The strategy generates a DC bias voltage using a capacitor voltage loop with a proportional integral (PI) controller. The proposed strategy can suppress the neutral-point voltage fluctuation effectively and improve the quality of output currents. The correctness of the theoretical analysis is verified through simulations. An experimental prototype of a TPTLTI based on Digital Signal Processor (DSP) is built. The feasibility and effectiveness of the proposed strategy is verified through experiment. The results from simulations and experiment match very well.

A Voltage Control Technique of Line-Interactive DVR Using 7-Level H-Bridge Inverter (7-레벨 H-Bridge 인버터를 이용한 Line-Interactive DVR의 전압제어)

  • Kang, Dae-Wook;Hyun, Dong-Seok;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.705-715
    • /
    • 2007
  • Recently, the interest on power quality has been hot issue because the equipments cause voltage disturbance and have become more sensitive to the voltage disturbance. Additionally, the reseach on power electronic equipments applying to the high power has been increased. This paper deals with Line-Interactive Dynamic Voltage Restorer(LIDVR) system using 7-Level H-Bridge inverter, which is one of the solutions to compensate the voltage disturbance and to increase the power of equipments. The LIDVR has the following advantages comparing to the DVR with the series injection transformer. It has the power factor near to unity under the condition of normal source voltage, can compensate the harmonic current of the load and the instant interruption, and has the fast response. First, the construction, the operation mode and algebraic modeling of LIDVR are reviewed. And then the voltage control algorithm is proposed to get the sinusoidal load voltage with constant amplitude. Finally, simulation and experiment results verify the proposed LIDVR system.