• Title/Summary/Keyword: Power LED system

Search Result 565, Processing Time 0.028 seconds

72[W] Power LED Photovoltaic Lighting System including the Current Limiting Function (전류제한 기능을 갖는 72[W ]급 파워 LED 태양광 보안등)

  • Park, Hyo-Sik;Han, Woo-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2999-3004
    • /
    • 2010
  • In comparison with some other light sources, LED has merits such as long lifetime, pollution free, and high energy efficiency. Lately, due to development of LED with high brightness and capacity, LED, which has been applied in display system only, has applied in the field of lighting system. As power LED for lighting system can be burned out by heat problem, the driving current of power LED has to be controlled below the designed value. In this paper, power LED photovoltaic lighting system, which has the current limitting function, has been described. After photovoltaic power is generated from PV panel. it is charged into a battery. And then, after the charged power is converted to DC24[V] through a boost DC-DC converter, it is supplied to power LED at night. It has been validated by designing and testing of 72[W] power LED lighting system, which includes a PV charger, a boost DC-DC converter and a current limiter for driving power LED.

A Study on the DC to DC Converter to Improve the Performance of Power LED System (파워 LED 시스템 성능개선을 위한 DC/DC 컨버터에 관한 연구)

  • Kim, Young Tae;Kim, Sei Yoon
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.85-90
    • /
    • 2022
  • In this paper, a DC converter to improve the performance of Power LED system is discussed. The mathematical model of PWM converter power stage using 3-Terminal PWM cell is introduced for power LED system. A controller for DC converter system is used as a self-tunning regulator with a recursive least-squares algorithm. Minimum variance control method is used as a control law. Experiment results verified that proposed control system could improve the performance of Power LED system.

Development of a Sensor-Based LED Lighting System with Low Standby Power (대기전력 저감형 LED 센서 조명시스템의 개발)

  • Kim, Jin-Geun;Kang, Moon-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • In this paper, we propose a sensor-based LED lighting system that can significantly reduce standby powers. The proposed LED lighting system has the more advanced power circuit and control mechanism compared to existing one. The whole power circuit consists of two subcircuits. One is designed to apply electric powers to controller, PIR(Pyroelectric Infrared Ray) sensor and CdS, and the other one is designed to apply electric powers to LED module. Such a power circuit configuration makes the standby powers reduction of LED lighting system possible. From the experimental results, we confirmed that the standby powers saving performance of the developed power circuit is superior to that of the conventional one.

A study on hybrid solar LED street light system (하이브리드 태양광 LED 가로등 시스템 연구)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.20-25
    • /
    • 2022
  • In line with the rapid economic growth of many countries, fossil fuel energy sources are also rapidly depleting. Therefore, the price is also rising rapidly, so it is necessary to develop new and renewable energy sources such as hydropower, geothermal power, nuclear power, wind power and solar energy to replace fossil fuel energy in the future. In this study, development of rotating concentrator module system, development of rotating module control control system, development of lamp and charge control controller, configuration and prototype production of rotating concentrating solar LED street light system, efficiency of rotating concentrating solar LED street light, and power production. The research was conducted in the order of evaluation of comprehensive performance tests such as consumption and consumption. As a result, the developed high-efficiency rotation-concentrating hybrid solar LED street light module system has a 50% higher light-gathering efficiency than existing products by tracing sunlight by self-developing a rotation-collecting module on existing solar LED street lamps according to the characteristics of Korea's topography. and the power generation was improved by more than 40%.

Development of LED Street Lighting Controller for Wind-Solar Hybrid Power System

  • Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1643-1653
    • /
    • 2014
  • This paper presents the design and implementation of a wind-solar hybrid power system for LED street lighting and an isolated power system. The proposed system consists of photovoltaic modules, a wind generator, a storage system (battery), LED lighting, and the controller, which can manage the power and system operation. This controller has the functions of maximum power point tracking (MPPT) for the wind and solar power, effective charging/discharging for the storage system, LED dimming control for saving energy, and remote data logging for monitoring the performance and maintenance. The proposed system was analyzed in regard to the operation status of the hybrid input power and the battery voltage using a PSIM simulation. In addition, the characteristics of the proposed system's output were analyzed through experimental verification. A prototype was also developed which uses 300[W] of wind power, 200[W] of solar power, 60[W] LED lighting, and a 24[V]/80[Ah] battery. The control system principles and design scheme of the hardware and software are presented.

An Efficient Hybrid LED Street Lighting Management System Design using Standalone Solar Photovoltaic (독립형 태양광 발전을 이용한 효율적인 하이브리드 LED 가로등 조명관리 시스템 설계)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.984-993
    • /
    • 2014
  • In this paper, we propose a design for an efficient hybrid LED street lighting management system using standalone solar photovoltaic. The proposed efficient hybrid LED street lighting management system was composed of hybrid power conditioning system, gateways, LED street lights and a monitoring server. The hybrid power conditioning system was designed to charge produced power by solar photovoltaic panels in day time, and supply power to the LED street lights in night time. If there is insufficient power, the system was designed to operate using firm power, because the system utilizes photovoltaic power. A system control algorithm allied to the lighting management system, and experimented by being configured to the functions that are able to perform real-time monitoring and remote control through the lighting management system even when absent. In the result of the efficiency analysis of the hybrid lighting management system proposed in this paper, we were able to increase the energy efficiency compared to existing lighting control systems by reducing power consumption and electricity costs.

Development of Constant Current Driving Module for High Power LED Lighting Using LLC DC-DC Transformer (LLC DC-DC 트랜스포머를 이용한 고출력 LED 조명용 정 전류 구동모듈 개발)

  • Kim, Hyung-Sik;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1130-1139
    • /
    • 2012
  • This paper proposes a LED lighting system using integrated power system composed of bridgeless PFC, LLC DC-DC transformer, and dimmable constant current LED driver module. The proposed LED lighting system features high efficiency, high power factor, and dimming capability. In order to verify the validity of the proposed system, the 2kW prototype system was built and tested. From the experimental results, it was confirmed that the maximun efficiency of 92.6% and maximum power factor of 99.7% can be achieved.

Single Stage Current-Balancing Multi-Channel LED Driver for LED TV (LED TV를 위한 단일전력단 전류평형 다채널 LED 구동회로)

  • Ryu, Dong-Kyun;Won, Chung-Yuen;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.564-571
    • /
    • 2014
  • A single-stage current-balancing multi-channel light-emitting diode (LED) driver is proposed in this study. The conventional LED driver system consists of two cascaded power conversion stages, i.e., an isolation DC/DC converter and LED driver. LED driver is usually implemented with the same number of expensive boost converters as those of LED channels to tightly control the current through each LED channel. Therefore, its overall system size is not only bulky, but the cost is rather high. By contrast, the proposed LED driver system is composed of a single power stage with the DC/DC converter and LED driver merged. Although the current balancing circuit of the proposed LED driver requires only passive devices instead of expensive boost converters, all currents through multi-channel LEDs can be well balanced. Therefore, the proposed LED driver features a small system size, improved efficiency, and low cost. To confirm the validity of the proposed driver, its operation and performance are verified on a prototype for a 46" LED TV.

The Operating System of High-power LED module with Back-Boost Mode (Back-Boost 방식 고출력 LED 구동시스템)

  • Chung, Ji-Hyun;Song, Sung-Geun;Park, Sung-Jun;Chang, Young-Hak;Moon, Chae-Joo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.201-208
    • /
    • 2006
  • An alternative to the nuclear and fossil fuel power is renewable energy technologies (hydro, wind, solar and ocean), and the research about the highest efficiency machinery have been processed. The high-power LED is the representative one among those. In this paper, a high efficiency lighting system using a battery charged with solar or wind power is proposed for a high power LED. And a new efficient converter called 'Back-boost' is proposed. The validity of the lighting system scheme is verified by experimental results based on a laboratory prototype.

Modular Current-Balancing circuit for Multi-channel LED driving (다중 채널 LED 구동을 위한 모듈형 전류 평형 회로)

  • Kim, Hyo-hun;Gu, Hyun-su;Han, Sang-kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.393-394
    • /
    • 2015
  • 본 논문은 다중 채널 LED(Light Emitting Diode) 구동을 위한 모듈형 전류 평형 회로를 제안한다. 기존 방식은 DC/DC 컨버터단과 다중 채널 LED 전류제어를 위해 각 채널마다 일정한 전류 제어를 하는 LED 드라이버단의 직렬 연결로 구성된다. 하지만 제안회로는 캐패시터의 전하평형원리에 의해 단일 채널 전류 제어로 모든 채널의 LED 전류를 동일하게 제어할 수 있어 DC/DC 컨버터와 LED 드라이버단을 하나로 통합한 단일 전력단 LED 구동회로 구성이 가능하며, 이는 회로구성의 단일화로 소자수 및 사이즈의 소형화가 가능하다. 또한 수동소자만으로 이루어진 모듈형 회로로써 모듈의 추가에 따라 요구되는 LED 채널 수 만큼 다채널 모듈로 확장할 수 있다. 제안회로의 타당성 검증을 위해 1kW급 LED 구동회로에 적용한 시뮬레이션 결과를 제시한다.

  • PDF