• 제목/요약/키워드: Power Generation Forecast

검색결과 84건 처리시간 0.024초

기상정보를 활용한 도시규모-EMS용 태양광 발전량 예측모델 (PV Power Prediction Models for City Energy Management System based on Weather Forecast Information)

  • 엄지영;최형진;조수환
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.393-398
    • /
    • 2015
  • City or Community-scale Energy Management System(CEMS) is used to reduce the total energy consumed in the city by arranging the energy resources efficiently at the planning stage and controlling them economically at the operating stage. Of the operational functions of the CEMS, generation forecasting of renewable energy resources is an essential feature for the effective supply scheduling. This is because it can develop daily operating schedules of controllable generators in the city (e.g. diesel turbine, micro-gas turbine, ESS, CHP and so on) in order to minimize the inflow of the external power supply system, considering the amount of power generated by the uncontrollable renewable energy resources. This paper is written to introduce numerical models for photo-voltaic power generation prediction based on the weather forecasting information. Unlike the conventional methods using the average radiation or average utilization rate, the proposed models are developed for CEMS applications using the realtime weather forecast information provided by the National Weather Service.

전력 수요 예측 관련 의사결정에 있어서 기온예보의 정보 가치 분석 (Analyzing Information Value of Temperature Forecast for the Electricity Demand Forecasts)

  • 한창희;이중우;이기광
    • 경영과학
    • /
    • 제26권1호
    • /
    • pp.77-91
    • /
    • 2009
  • It is the most important sucess factor for the electricity generation industry to minimize operations cost of surplus electricity generation through accurate demand forecasts. Temperature forecast is a significant input variable, because power demand is mainly linked to the air temperature. This study estimates the information value of the temperature forecast by analyzing the relationship between electricity load and daily air temperature in Korea. Firstly, several characteristics was analyzed by using a population-weighted temperature index, which was transformed from the daily data of the maximum, minimum and mean temperature for the year of 2005 to 2007. A neural network-based load forecaster was derived on the basis of the temperature index. The neural network then was used to evaluate the performance of load forecasts for various types of temperature forecasts (i.e., persistence forecast and perfect forecast) as well as the actual forecast provided by KMA(Korea Meteorological Administration). Finally, the result of the sensitivity analysis indicates that a $0.1^{\circ}C$ improvement in forecast accuracy is worth about $11 million per year.

전원구성비율 예측을 위한 System Dynamics모형 개발 (Development of a System Dynamics Model for the Electric Power Generation Mix Forecasting in the Competitive Electricity Market)

  • 홍정석;곽상만;나기룡;박문희;최기련
    • 한국시스템다이내믹스연구
    • /
    • 제4권1호
    • /
    • pp.33-53
    • /
    • 2003
  • How to maintain the optimal electric power generation mix is one of the important problems in electric power industry. The objective of this study is to develop a computer model which can be used to forecast the investment in power generation unit by the plant owners after restructuring of electric power industry. Restructuring of electric power industry will make difference in decision making process of investment in power generation unit. After Privatiazation of Power Industry, Gencos will think that profit is the most important factor among all others attracting the investment in the industry. Coal power generation is better than LNG CCGT in terms of profit. However, many studies show that LNG CCGT will be main electric power generation source because the rest of factors other than profit in LNG CCGT are superior than Coal power generation. Because the nst of factors other than profit in LNG CCGT are superior than Coal power generation. The impacts of the various government policies can be analyzed using the computer model, thus the government can formulate effective policies for achieving the desired electric power generation mix.

  • PDF

클라우드 컴퓨팅 환경에 적합한 그룹 키 관리 프로토콜 (Group key management protocol adopt to cloud computing environment)

  • 김용태;박길철
    • 디지털융복합연구
    • /
    • 제12권3호
    • /
    • pp.237-242
    • /
    • 2014
  • IT 서비스 및 컴퓨팅 자원을 기반으로 인터넷 서비스를 제공하는 클라우드 컴퓨팅이 최근 큰 관심을 받고 있다. 그러나 클라우드 컴퓨팅 시스템에 저장되는 데이터는 암호화한 후 저장되어도 기밀 정보가 유출되는 문제점이 있다. 본 논문에서는 사용자가 클라우드 컴퓨팅 시스템에서 제공되는 데이터를 제 3자가 임의로 악용하는 것을 예방하기 위한 그룹 키 관리 프로토콜을 제안한다. 제안된 프로토콜은 임의의 사용자가 원격에서 클라우드 컴퓨팅 서버에 접근할 경우 서버에 존재하는 사용자 인증 데이터베이스내 사용자 정보를 일방향 해쉬 함수와 XOR 연산을 사용하여 사용자 인증을 제공받는다. 도한 사용자의 신분확인 및 권한을 연동하여 클라우드 컴퓨팅 시스템에 불법적으로 접근하는 사용자를 탐색함으로써 클라우드 컴퓨팅의 사용자 보안 문제를 해결하고 있다.

델파이 활용 신재생 에너지 수요예측과 장기전원 구성의 경제성 평가 (Forecasting Renewable Energy Using Delphi Survey and the Economic Evaluation of Long-Term Generation Mix)

  • 구훈영;민대기
    • 대한산업공학회지
    • /
    • 제39권3호
    • /
    • pp.183-191
    • /
    • 2013
  • We address the power generation mix problem that considers not only nuclear and fossil fuels such as oil, coal and LNG but also renewable energy technologies. Unlike nuclear or other generation technologies, the expansion plan of renewable energy is highly uncertain because of its dependency on the government policy and uncertainty associated with technology improvements. To address this issue, we conduct a delphi survey and forecast the capacity of renewable energy. We further propose a stochastic mixed integer programming model that determines an optimal capacity expansion and the amount of power generation using each generation technology. Using the proposed model, we test eight generation mix scenarios and particularly evaluate how much the expansion of renewable energy contributes to the total costs for power generation in Korea. The evaluation results show that the use of renewable energy incurs additional costs.

그림자 효과를 고려한 태양전지 모듈의 발전량 예측 연구 (Prediction Study of Solar Modules Considering the Shadow Effect)

  • 김민수;지상민;오수영;정재학
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.80-86
    • /
    • 2016
  • Since the last five years it has become a lot of solar power plants installed. However, by installing the large-scale solar power station it is not easy to predict the actual generation years. Because there are a variety of factors, such as changes daily solar radiation, temperature and humidity. If the power output can be measured accurately it predicts profits also we can measure efficiency for solar power plants precisely. Therefore, Prediction of power generation is forecast to be a useful research field. In this study, out discovering the factors that can improve the accuracy of the prediction of the photovoltaic power generation presents the means to apply them to the power generation amount prediction.

기상관측자료를 이용한 제주도 풍력단지의 풍력발전량 예측에 관한 연구 (A Study on Estimation of Wind Power Generation using Weather Data in Jeju Island)

  • 류구현;김기수;김재철;송경빈
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2349-2353
    • /
    • 2009
  • Due to high oil price and global warming of the earth, investments for renewable energy have been increased a lot continuously. Specially, wind power has been received a great attention in the world. In order to construct a new wind farm, forecasting of wind power generation is essential for a feasibility test. This paper investigates wind velocity measurement data of Gosan weather station which located in Hankyung of Jeju island. This paper presents results of estimation of wind power generation using digital weather forecast provided from Korea meteorological administration, and the accuracy of the wind power forecasting by comparison between forecasted data and actual wind power data.

Real-Time Peak Shaving Algorithm Using Fuzzy Wind Power Generation Curves for Large-Scale Battery Energy Storage Systems

  • Son, Subin;Song, Hwachang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.305-312
    • /
    • 2014
  • This paper discusses real-time peak shaving algorithms for a large-scale battery energy storage system (BESS). Although several transmission and distribution functions could be implemented for diverse purposes in BESS applications, this paper focuses on a real-time peak shaving algorithm for an energy time shift, considering wind power generation. In a high wind penetration environment, the effective load levels obtained by subtracting the wind generation from the load time series at each long-term cycle time unit are needed for efficient peak shaving. However, errors can exist in the forecast load and wind generation levels, and the real-time peak shaving operation might require a method for wind generation that includes comparatively large forecasting errors. To effectively deal with the errors of wind generation forecasting, this paper proposes a real-time peak shaving algorithm for threshold value-based peak shaving that considers fuzzy wind power generation.

부하예측 및 태양광 발전예측을 통한 ESS 운영방안(Guide-line) 연구 (Through load prediction and solar power generation prediction ESS operation plan(Guide-line) study)

  • 이기현;곽경일;채우리;고진덕;이주연
    • 디지털융복합연구
    • /
    • 제18권12호
    • /
    • pp.267-278
    • /
    • 2020
  • 에너지 패러다임이 격변하는 시점에서 ESS는 전력부족 및 전력수요관리의 해소와 재생에너지의 증진에 필수적인 요건이다. 이에 본 논문에서는 부하 및 태양광 발전 예측량을 통하여 비용효과적인 ESS Peak-Shaving 운영방안을 제안한다. ESS 운영방안을 위해 통계적 척도인 RMS을 통해 부하 및 태양광 발전 예측하였으며 예측된 부하 및 태양광 발전량을 통해 한 시간 단위의 목표 부하 절감량 Guide-line을 설정하였다. 대상 수용가의 1년 실데이터를 활용한 부하 및 태양광 발전 예측 시뮬레이션으로 2019년 5월 6일 ~ 10일의 부하 및 태양광 발전량을 예측 하였으며 시간별 Guide-line을 설정하였다. 부하 예측 평균오차율은 7.12%였으며, 태양광 발전량 예측 평균오차율은 10.57%를 나타냈다. ESS 운영방안을 통한 시간별 Guide-line 제시를 통해 수용가의 Peak-shaving 최대화에 기여하였음을 확인하였다. 본 논문의 결과를 통해 태양광과 연계하여 화석에너지로 발생하는 환경적인 영향을 최소화하며 신재생에너지를 최대 활용하여 에너지 문제를 줄일 수 있다고 기대한다.

Prediction Intervals for Day-Ahead Photovoltaic Power Forecasts with Non-Parametric and Parametric Distributions

  • Fonseca, Joao Gari da Silva Junior;Ohtake, Hideaki;Oozeki, Takashi;Ogimoto, Kazuhiko
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1504-1514
    • /
    • 2018
  • The objective of this study is to compare the suitability of a non-parametric and 3 parametric distributions in the characterization of prediction intervals of photovoltaic power forecasts with high confidence levels. The prediction intervals of the forecasts are calculated using a method based on recent past data similar to the target forecast input data, and on a distribution assumption for the forecast error. To compare the suitability of the distributions, prediction intervals were calculated using the proposed method and each of the 4 distributions. The calculations were done for one year of day-ahead forecasts of hourly power generation of 432 PV systems. The systems have different sizes and specifications, and are installed in different locations in Japan. The results show that, in general, the non-parametric distribution assumption for the forecast error yielded the best prediction intervals. For example, with a confidence level of 85% the use of the non-parametric distribution assumption yielded a median annual forecast error coverage of 86.9%. This result was close to the one obtained with the Laplacian distribution assumption (87.8% of coverage for the same confidence level). Contrasting with that, using a Gaussian and Hyperbolic distributions yielded median annual forecast error coverage of 89.5% and 90.5%.