• Title/Summary/Keyword: Power Generation Capacity

Search Result 642, Processing Time 0.044 seconds

Forecasting Renewable Energy Using Delphi Survey and the Economic Evaluation of Long-Term Generation Mix (델파이 활용 신재생 에너지 수요예측과 장기전원 구성의 경제성 평가)

  • Koo, Hoonyoung;Min, Daiki
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.3
    • /
    • pp.183-191
    • /
    • 2013
  • We address the power generation mix problem that considers not only nuclear and fossil fuels such as oil, coal and LNG but also renewable energy technologies. Unlike nuclear or other generation technologies, the expansion plan of renewable energy is highly uncertain because of its dependency on the government policy and uncertainty associated with technology improvements. To address this issue, we conduct a delphi survey and forecast the capacity of renewable energy. We further propose a stochastic mixed integer programming model that determines an optimal capacity expansion and the amount of power generation using each generation technology. Using the proposed model, we test eight generation mix scenarios and particularly evaluate how much the expansion of renewable energy contributes to the total costs for power generation in Korea. The evaluation results show that the use of renewable energy incurs additional costs.

Estimating generation capacity of geothermal power generation pilot plant project (우리나라 지열발전 pilot plant 프로젝트의 발전량 추정)

  • Song, Yoonho;Lee, Tae Jong;Yoon, Woon Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.197.1-197.1
    • /
    • 2011
  • Target generation capacity of geothermal power generation pilot plant project through the Enhanced Geothermal Systems (EGS) with a doublet system down to 5 km depth was estimated. Production and re-injection temperatures of geothermal fluid were assumed $160^{\circ}C$ and $60^{\circ}C$, respectively, based on reservoir temperature of $180^{\circ}C$ calculated from the geothermal gradient of $33^{\circ}C$ in Pohang area. In this temperature range, 0.11 of thermal efficiency of the binary generation cycle is a practical choice. Assuming flow rates of 40 kg/sec, which is possible in current EGS technology, gross power generation capacity is estimated to reach 1.848 MW. Net generation considering auxiliary power including pumping power for geothermal fluid and condensing (cooling) energy of working fluid can be 1.5 MW.

  • PDF

A Study on the Power Generation Compared to the Capacity of Power Generation Facilities by Energy Sources in Summer Season (하절기의 에너지원별 발전설비용량 대비 발전량에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.36-40
    • /
    • 2019
  • In this study, we compared the operational rates of natural gas, coal, nuclear power and renewable energy based on the data of power generation and power generation facilities produced in summer season(from June to August) during the last four years(2015~2018). Nuclear power and coal power, which are responsible for basic power generation, were guaranteed to be economical as the actual generation capacity remained 60% higher than the cost of power generation. On the other hand, natural gas generation and new renewable energy generation have a very low actual operation rate of 29.5% and 27.3% compared to investments in power generation facilities, making it difficult to lower the cost of power generation. However, coal generation has structural problems in terms of greenhouse gas, fine dust. On the other hand, natural gas generation is relatively low and even though it is safe, it is difficult to secure economic feasibility as it is bound by a peak power system. Therefore, it is only possible to achieve balanced development of energy sources when there is a change in the development policy.

A Restoration Algorithm using Moving the tie Switch in Distribution System in case of Fault Occur in Power system Substation MTR (변전소 내 주변압기 사고 발생 시 배전계통 연계점 이동을 통한 복구 알고리즘)

  • Hong, Jun-Ho;Lee, Seung-Jae;Choi, Myeon-Song;Lim, Il-Hyung;Kim, Tae-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.159_160
    • /
    • 2009
  • In this paper proposes a new algorithm of efficiency outage restoration using a outage load switching to a healthy MTR a fault occurrence at a MTR. In addtion, proposed algorithm includes a outage restoration method which keeps MTR optimal capacity with reorganization of distribution network in case it can not restore outage state loads caused by shortage of healthy MTR remain capacity. In case that proposed sequence still can not complete restoration, this paper suggests a efficiency outage restoration with objective function included priority in outage loads.

  • PDF

A Study on the Assessment of Operational Capacity Limit of Wind Turbine for the Frequency Stability of Jeiu Island System (제주계통 단독운전 시 주파수 안정도 유지를 위한 풍력발전 운전용량 산정 방법에 관한 연구)

  • Hwang, Kyo-Ik;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • As the Kyoto Protocol, which aims at reducing greenhouse gases in accordance to the UNFCCC, came into force, research on environment friendly energy resources has been a matter of concern worldwide. As a general power generation system, among renewable energy resources, that is interconnected and operated with power system, the wind turbine is emerging as an effective alternative. Since power capacity of the wind turbine has been steadily increasing and its relative importance is also increasing in total facility capacity, we cannot ignore its effect. Because controlling generation output in the wind turbine is not as easy as in the synchronous machine due to its facility characteristics and it generates irregular output fluctuations when interconnected with power system, system interconnection was difficult. But the effect of large capacity wind turbine on isolated power system like Jeju island is serious problem on the frequency stability. Accordingly, it is necessary to analyze the effects of wind turbine on system interconnection and assess the optimum capacity of wind turbine that satisfies the most important principle of stable power supply. This paper have analyzed the effects of wind turbine capacity increases on the system and suggested the method of the capacity to achieve its steady operation. And It is applied to the Jeju island.

A Multi-level Optimal Power Flow Algorithm for Constrained Power Economic Dispatch Control (제약조건을 고려한 경제급전 제어를 위한 다단계 최적조류계산 알고리즘)

  • Song, Gyeong-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.424-430
    • /
    • 2001
  • A multi-level optimal power flow(OPF) algorithm has been evolved from a simple two stage optimal Power flow algorithm for constrained power economic dispatch control. In the proposed algorithm, we consider various constraints such as ower balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the two stage optimization method to an average gain of 2.99 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

A Study on Optimal Flywheel Capacity Estimation for Ulleung-do Power System (울릉도 계통에 대한 플라이휠 최적 용량 산정에 관한 연구)

  • Choi, Seong-Won;Lee, Han-Sang;Lee, Jung-Pil;Han, Sang-Chul;Sung, Tae-Hyun;Han, Young-Heui;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.606-607
    • /
    • 2007
  • This paper is about optimal flywheel capacity estimation for Ullueng-do power system. The power system of Ullueng-do has some differences with other island power system in Korea. It includes wind generator, hydro-generators as well as diesel generators. There are some problems on 600kW wind generator. Because of frequent drop of wind generator, the Ulleung-do power system have been threatened on frequency. The power frequency is 60Hz, and it should be between 59.9 and 60.1Hz. However, since the electrical inertia is small and the weight of wind generation is relatively high, generator drop of wind generation might make the power frequency out of boundary. In this paper, the flywheel energy storage system is assumed to be installed on Ulleung-do power system. Then, the maximum wind generation capacity and the optimal superconducting flywheel energy storage system capacity is estimated by the transient stability simulations.

  • PDF

A Fast Optimization Algorithm for Optimal Real Power Flow (고속의 유효전력 최적조류계산 알고리즘)

  • Song, Kyung-Bin;Kim, Hong-Rae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.926-928
    • /
    • 1998
  • A fast optimization algorithm has been evolved from a simple two stage optimal power flow(OPF) algorithm for constrained power economic dispatch. In the proposed algorithm, we consider various constraints such as power balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the coupled LP based OPF method to an average gain of 53.13 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

Impacts on short-circuit capacity by interconnection of new energy source generation into the distribution system (신 에너지전원설비의 배전계통 연계에 의한 단락용량 검토)

  • Kim, Eung-Sang;Kim, Seul-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.476-479
    • /
    • 2001
  • Interconnection of new energy sources, such as photovoltaic generation, wind power generation, etc., into the electric power distribution system may result in the increasing short-circuit capacity when a short circuit fault occurs. The short-circuit capacity becomes over the interrupting ratings of circuit breakers, and then they fails to operate in the proper way they prevent fault currents from flowing into the distribution facilities and thus causing them serious damages. This study deals with impacts on the respective short-circuit capacity of both low voltage and extra high voltage distribution systems at which new energy sources are installed. In order to obtain more accurate and all-case values very close to reality in the complicated distribution system, computer simulation tools should be required. In this paper, however, its focus is placed on examining the varying trend of short-circuit capacity, which may happen owing to new energy source interconnection, as a previewing step for exhaustive simulation studies.

  • PDF

The comparison of tidal power generation methods at Sukmodo (강화도 석모도 지역에서의 효율적인 조력발전방식 비교)

  • Lee, Tae-Hoon;Sim, Ju-Yeol;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.435-438
    • /
    • 2008
  • The huge economical damage and environmental pollution have been occurred for decades because of using of fossil fuel. So the development of alternative energy is urgent. In the west sea of Korea, a proper area for tidal power plant, development and investigation for economical efficient of tidal power plant are preceeding. The water turbine generator with the capacity of 25.4MW was used to compare single-basin flood tide generation with ebb tide generation while considering the water depth and tide in the vicinity of Sukmodo.

  • PDF