• 제목/요약/키워드: Power Generation Capacity

검색결과 653건 처리시간 0.026초

전압안정도를 고려한 경제적인 발전가능전력의 산정알고리즘에 관한 연구 (A Study on Assesment Algorithm for the Economical Generation Capability considering Voltage Stability)

  • 문현호;이종주;윤창대;안비오;최상열;신명철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권12호
    • /
    • pp.536-543
    • /
    • 2006
  • This paper uses Monte Carlo technique, which is one of probabilistic methods of estimating the economical quantity of electric power generation in consideration of voltage stability in the aspect of power generation companies. In the power exchange system in Korea, when power generation companies participate in tenders for power generation capacity at the power exchange, they need to determine their power supply capacity considering the stability of electric power system. Thus, we purposed to propose an algorithm for estimating economical power generation capacity in theaspect of power generation companies, through which we can estimate the margin for voltage stability through P-V curve analysis by capacity according to the change of power generation capacity in a simulated system and to conduct Monte Carlo simulation in consideration of the margin

태양광발전시스템의 장기운전에 의한 성능특성 분석 (The Long-term Operating Evaluation of the Grid Connected Photovoltaic System)

  • 김의환;강승원;김재언
    • 신재생에너지
    • /
    • 제7권2호
    • /
    • pp.28-35
    • /
    • 2011
  • Recently, photovoltaic systems have been devolved into much larger systems up to MW-scale. Photovoltaic industry participants give their focus on power generation capability of photovoltaic modules because their benefits can be decided from the amount of generation. The information on long-term performance change of photovoltaic modules helps to estimate the amount of power generation and evaluate the economic cost-benefits. Long-term performance of a PV system has been analyzed with operation data for 12 years from 1999 to 2010. In the first year, the amount of yearly power generation was 57.7 MWh with 13.2% capacity factor. In 2007, the amount of yearly generation was 44.3 MWh with 10.14% capacity factor, and in 2010, the amount was decreased down to 38.1 MWh with 8.7% capacity factor. The result means that long-term capacity factor has been 4.5% decreased for 12 years and that the amount of generation has been decreased 34.0% for 12 years which is 2.8 % per year. The latter capacity factor has been decreased faster than 0.20%, the average rate for 10 years. The performance decrease of the PV system is meant to be accelerated. The decrease of performance and utilization is due to aged deterioration of photovoltaic modules and lowering conversion efficiency of PCS.

제주 계통 신재생 발전 자원의 유효 공급능력 추정에 관한 연구 (A Study on Estimation of Capacity Value for Renewable Generation in Jeju-Island)

  • 위영민
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.469-473
    • /
    • 2019
  • 신재생 발전 자원의 경우 기존 설비와 다르게 기후 환경적 요소에 의해 공급능력이 결정되기 때문에 신재생 발전 자원의 공급능력 산정을 위해 실효공급용량 계산이 필요하다. 본 연구에서는 신재생 발전 자원의 공급능력 추정 방법에 대한 국내 외 사례조사와 국내 제주 계통의 데이터를 이용한 검증 내용을 담고 있다. 본 논문은 신재생 발전 비율이 높은 제주계통을 별도로 신재생 발전 자원의 실효 공급능력을 추정한 것으로 기존 국내 연구와 차별성이 있다.

배터리 충전방식을 고려한 신재생에너지 기반 분산발전시스템의 용량선정 (Optimal Sizing of Distributed Power Generation System based on Renewable Energy Considering Battery Charging Method)

  • 김혜림;김동섭
    • 플랜트 저널
    • /
    • 제17권3호
    • /
    • pp.34-36
    • /
    • 2021
  • 기존의 중앙집중식 발전의 탈피와 에너지 전환 및 환경문제 인식에 의해 신재생에너지 기반의 분산발전시스템에 대한 관심이 증가하고 있다. 본 연구에서는 에너지저장장치로 납축전지를 사용하는 PV 및 WT 기반의 분산발전시스템을 모사하여 최적용량을 선정하였다. 기존 발전원으로 CHP를 채택하였으며 시스템의 최적용량은 기존발전원의 운전상황(전부하/부분부하)에 따라 MOGA를 통해 도출하였다. 또한 동일한 배터리 용량에서 배터리 충전방식이 달라지면 배터리의 수명이 달라지는 것을 확인하였다. 따라서 경제적이고 안정적인 전력수급을 위해서는 배터리 충전방식을 고려한 분산발전시스템의 용량선정이 수행되어야 한다.

전압변동과 부하량을 고려한 저압배전계통의 분산전원 설치용량 분석 (The Study on Permissible Capacity of Distributed Generation Considering Voltage Variation and Load Capacity at the LV Distribution Power System)

  • 문원식;조성민;신희상;이희태;한운기;추동욱;김재철
    • 전기학회논문지P
    • /
    • 제59권1호
    • /
    • pp.100-105
    • /
    • 2010
  • This paper describes a capacity of distributed generation which will be interconnected at low voltage distribution systems. In order to set the capacity of distributed generation, a voltage variation of distribution system is considered. Besides, the capacity of distributed generation is classified according to a capacity of pole transformer and loads. The system constructions in this paper are analyzed by using PSCAD/EMTDC. In the immediate future, it is expected to increase the installation of New and renewable energy systems which are generally interconnected to distribution power systems in the form of distributed generations like photovoltaic system, wind power and fuel cell. So the study of this kind would be needed to limit the capacity of distributed generation.

계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술 (Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources)

  • 박정민
    • 통합자연과학논문집
    • /
    • 제16권4호
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

발전용량 및 풍속에 따른 국내 풍력 발전단지의 효율성 분석 (The Effect of Power Generation Capacity and Wind Speed on the Efficiency of the Korean Wind Farms)

  • 이중우;고광근;이기광
    • 경영과학
    • /
    • 제30권2호
    • /
    • pp.97-106
    • /
    • 2013
  • Of the new and renewable energies currently being pursued domestically, wind energy, together with solar photovoltaic energy, is a new core growth driver industry of Korea. As of May 2012, 33 wind farms at a capacity of 347.8MW are in operation domestically. The purpose of this study was to compare and analyze how efficiently each operational wind farm is utilizing its power generation capacity and the weather resource of wind. For this purpose, the study proceeded in 3 phases. In phase 1, ANOVA analysis was performed for each wind farm, thereby categorizing farms according to capacity, region, generator manufacturer, and quantity of weather resources available and comparing and analyzing the differences among their operating efficiency. In phase 2, for comparative analysis of the operating efficiency of each farm, Data Envelopment Analysis (DEA) was used to calculate the efficiency index of individual farms. In the final phase, phase 3, regression analysis was used to analyze the effects of weather resources and the operating efficiency of the wind farm on the power generation per unit equipment. Results shows that for wind power generation, only a few farms had relatively high levels of operating efficiency, with most having low efficiency. Regression analysis showed that for wind farms, a 1 hour increase in wind speeds of at least 3m/s resulted in an average increase of 0.0000045MWh in power generation per 1MW generator equipment capacity, and a unit increase in the efficiency scale was found to result in approximately 0.20MWh power generation improvement per unit equipment.

농업용저수지를 이용한 소수력의 연간발전량 추정 (Estimation of Annual Capacity of Small Hydro Power Using Agricultural Reservoirs)

  • 우재열;김진수
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.1-7
    • /
    • 2010
  • This study was carried out to investigate the effect of hydro power factors (e.g., irrigation area, watershed area, active storage, gross head) on annual generation capacity and operation ratio for agricultural reservoirs in Chungbuk Province with active storage of over 1 million $m^3$. The annual generation capacity and operation ratio were estimated using HOMWRS (Hydrological Operation Model for Water Resources System) from last 10-year daily hydrological data. The correlation coefficients between annual generation capacity and the hydro power factors except gross head were high (over 0.87), but the correlation coefficients between operational rate and the factors were low (below 0.28). The optimum multiple regression equations of the annual generation capacity were expressed as the functions of watershed area, active storage, and gross head. Also, the simple regression equation of annual generation capacity was expressed as a function of watershed area. The average relative root-mean-square-error (RRMSE) between observed and estimated values by the optimum multiple regression equations was smaller than that by the simple regression equation, suggesting that the former has more accuracy than the latter.

Incorporating Resource Dynamics to Determine Generation Adequacy Levels in Restructured Bulk Power Systems

  • Felder, Frank A.
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권2호
    • /
    • pp.100-105
    • /
    • 2004
  • Installed capacity markets in the northeast of the United States ensure that adequate generation exists to satisfy regional loss of load probability (LOLP) criterion. LOLP studies are conducted to determine the amount of capacity that is needed, but they do not consider several factors that substantially affect the calculated distribution of available capacity. These studies do not account for the fact that generation availability increases during periods of high demand and therefore prices, common-cause failures that result in multiple generation units being unavailable at the same time, and the negative correlation between load and available capacity due to temperature and humidity. A categorization of incidents in an existing bulk power reliability database is proposed to analyze the existence and frequency of independent failures and those associated with resource dynamics. Findings are augmented with other empirical findings. Monte Carlo methods are proposed to model these resource dynamics. Using the IEEE Reliability Test System as a single-bus case study, the LOLP results change substantially when these factors are considered. Better data collection is necessary to support the more comprehensive modeling of resource adequacy that is proposed. In addition, a parallel processing method is used to offset the increase in computational times required to model these dynamics.

분산전원이 연계된 복합배전개통에 신규분산전원연계시 신규분산전원 도입량에 관한 연구 (The Study for Allowable Capacity of New Distributed Generation for Composite Distribution System Interconnected Distributed Generation)

  • 정승복;김재철;문종필;최준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.277-279
    • /
    • 2002
  • Recently, power requirement has been increasing. But the large generation unit is hardly installed because of economic and environment problem. Therefore, the concern for DG(distributed generation) is growing. Present, allowable interconnection capacity of DG for composite distributed generation is studied. In this paper, it is studied that the new interconnection capacity of DG for composite distribution system interconnected DG. We study new allowable interconnection capacity by power factor and placement. We study SERV(sending end reference voltage) variation and allowable interconnection capacity interconnected new DG.

  • PDF