• Title/Summary/Keyword: Power Flow problem

Search Result 419, Processing Time 0.033 seconds

Maximization of Transmission System Loadability with Optimal FACTS Installation Strategy

  • Chang, Ya-Chin;Chang, Rung-Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.991-1001
    • /
    • 2013
  • Instead of building new substations or transmission lines, proper installation of flexible AC transmission systems (FACTS) devices can make the transmission networks accommodate more power transfers with less expansion cost. In this paper, the problem to maximize power system loadability by optimally installing two types of FACTS devices, namely static var compensator (SVC) and thyristor controlled series compensator (TCSC), is formulated as a mixed discrete-continuous nonlinear optimization problem (MDCP). To reduce the complexity of the problem, the locations suitable for SVC and TCSC installations are first investigated with tangent vector technique and real power flow performance index (PI) sensitivity factor and, with the specified locations for SVC and TCSC installations, a set of schemes is formed. For each scheme with the specific locations for SVC and TCSC installations, the MDCP is reduced to a continuous nonlinear optimization problem and the computing efficiency can be largely improved. Finally, to cope with the technical and economic concerns simultaneously, the scheme with the biggest utilization index value is recommended. The IEEE-14 bus system and a practical power system are used to validate the proposed method.

Numerical Analysis of Y-shaped Check Valve for Power Plant (발전소용 Y형 체크밸브에 관한 수치해석 연구)

  • Lee, Jae-Hun;Kim, Si-Pom;Jeon, Rock-Won;Lee, Geun-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.129-135
    • /
    • 2016
  • Various type of valves are manufactured for different industrial uses. Among them, check valves are used to allow fluid to flow in one direction but not in the opposite direction. There are many different types of check valves, but Y-shaped check valves are widely used these days. Not many studies have been carried out on Y-shaped check valves and the flow coefficients obtained through numerical analysis have the problem of low reliability. In order to solve this problem, this study performed flow analysis, flow-structure coupled analysis, and flow coefficient measurement experimentally, and through these analyses derived and verified the flow coefficients and assessed the structural safety based on numerical analysis.

A Case Study of Root Cause Analyses and Remedies for High frequency Vibration of Globe Valve in Nuclear Power Plant Piping System (원자력 발전소 배관계 글로브 밸브의 고주파 진동 원인 분석 및 해결 사례)

  • Choi, Byoung-Hwa;Park, Soo-Il;Cheon, Chang-Bin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.394-399
    • /
    • 2005
  • A case history is presented pertaining to high frequency piping vibration and noise caused by globe valve in the spent fuel pool cooling system of nuclear power plant. Frequency analyses were performed on the system to diagnose the problem and develop a solution to reduce the piping vibration and noise. The source of the high frequency and noise energy was traced to the globe valve located immediately downstream of the centrifugal pump by performing valve throttling test. Measurements of vibration and noise are presented to show that the high frequency vibration and noise amplitude was dependent upon the valve disc position and flow rate. Strouhal vortex shedding frequencies were generated at the exit of the globe valve which exited structural resonance of valve disc and amplified the high frequency vibration and noise. The problem was identified as an interaction between the flow inside globe valve and the valve disc structure. Attempts to reduce the vibration and noise amplitudes of the piping system were successfully achieved by the modification of guide-disc diameter and disc-edge figure The valve disc was replaced by an alternative to eliminate the source of the harmful high frequency vibration and noise.

  • PDF

Power Flow Calculation Method of DC Distribution Network for Actual Power System

  • Kim, Juyong;Cho, Jintae;Kim, Hongjoo;Cho, Youngpyo;Lee, Hansang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.419-425
    • /
    • 2020
  • DC distribution system has been evaluated as an excellent one in comparison with existing AC distribution network because it needs fewer power conversion stages and the full capacity of the equipment can be used without consideration for power factor. Recently, research and development on the implementation of DC distribution networks have been progressed globally based on the rapid advancement in power-electronics technology, and the technological developments from the viewpoint of infrastructure are also in progress. However, to configure a distribution network which is a distribution line for DC, more accurate and rapid introduction of analysis technology is needed for the monitoring, control and operation of the system, which ensure the system run flexible and efficiently. However, in case of a bipolar DC distribution network, there are two buses acting as slack buses, so the Jacobian matrix cannot be configured. Without solving this problem, DC distribution network cannot be operated when the network is unbalanced. Therefore, this paper presented a comprehensive method of analysis with consideration of operating elements which are directly connected between neutral electric potential caused by the unbalanced of load in DC distribution network with bipolar structure.

Optimal Power Flow with Discontinous Fuel Cost Functions Using Decomposed GA Coordinated with Shunt FACTS

  • Mahdad, Belkacem;Srairi, K.;Bouktir, T.;Benbouzid, M.EL.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.457-466
    • /
    • 2009
  • This paper presents efficient parallel genetic algorithm (EPGA) based decomposed network for optimal power flow with various kinds of objective functions such as those including prohibited zones, multiple fuels, and multiple areas. Two coordinated sub problems are proposed: the first sub problem is an active power dispatch (APD) based parallel GA; a global database generated containing the best partitioned network: the second subproblem is an optimal setting of control variables such as generators voltages, tap position of tap changing transformers, and the dynamic reactive power of SVC Controllers installed at a critical buses. The proposed approach tested on IEEE 6-bus, IEEE 30-bus and to 15 generating units and compared with global optimization methods (GA, DE, FGA, PSO, MDE, ICA-PSO). The results show that the proposed approach can converge to the near solution and obtain a competitive solution with a reasonable time.

A Power-Generation System using Cavitation jet flow (케비테이션 제트 유동을 이용한 발전 시스템)

  • Na, Jeoungsu;Lee, Kangju;Lee, Bongyeol;Joo, Namsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.162.1-162.1
    • /
    • 2010
  • Cavitation phenomenon has long been a difficult problem that regarded as negative event to fluid machines or industrial facilities. In the latest, however, some engineers became to understand the power of cavitation and use it to cleaning wall after developing cavitation nozzle. In this paper, we introduce new concept for power-generation system using cavitation jet flow maid by nozzle and impulse turbine in vacuum condition. The vacuum needed to make cavitation is generated naturally by Torricelli's vacuum, 10.23m effective head drop without additional power. We analyzed water's boiling and the steam's mean free path according to vacuum purity levels for nozzles and turbine blades. The nozzles make water accelerate in the neck and boil in expansion section of the nozzles. The shape of the impulse turbine is designed for absorption of the molecule's kinetic energy of the steam.

  • PDF

A Study on the Congestion Management by OPF in the Electricity Power Market with the Bidding Function (입찰함수에 의한 전력거래에서의 최적조류 계산에 의한 혼잡비용 처리연구)

  • Kim, Gwang-Ho;Jeong, Jae-Ok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.374-379
    • /
    • 2000
  • The nodal marginal cost and the congestion charge are used as the econimic signals for the electricity price and new invetments in deregulated power systems. In this paper, the nodal marginal cost and the congestion charge are calculated by using the shadow prices resulted from the calculation of Optimal Power Flow(OPF). Linearization of inequality constraints and piecewise linear cost functions make an OPF problem LP-based forms. In order to use the shadow price, the Interior Point(IP) algorithm is applied as a solution technique to the formulation. This paper proposes an algorithm to determine efficients initial points which are guaranteed to be interior points.

  • PDF

A Study on the System Loss Minimizing Algorithm by Optimal Re-location of Static Condenser Using System Power Loss Sensitivity (계통손실 감소를 위한 전력용 콘덴서의 適正 再配置에 대한 연구)

  • 이상중;김건중;정태호;김원겸;김용배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.1
    • /
    • pp.21-24
    • /
    • 1995
  • The larger and the more complicated the system size and configuration grow, the more serious the system loss problem becomes. Exessive system loss causes severs system voltage depression, which even may result in system voltage collapse. This paper proposes an effective tool for minimizing the system power loss by optimal re-location of the static condenser based on the system loss sensitivity index .lambda.$_{Q}$. It is possible to determine the optimal location and amount of VAR investment for minimizing the system loss by priority of .lambda.$_{Q}$ index given for each bus. Several computational techniques for avoiding divergency of the load flow solution are proposed. The loss sensitivity index .lambda.$_{Q}$ uses information of normal power flow equations and their Jacobians. Two case studies proved the effectiveness of the algorithm proposed.posed.

  • PDF

Application and Verification of Cold Air Velocity Technique for Solving Tube Ash Erosion Problem in PC Boilers (석탄화력발전소 보일러 튜브 마모 문제에 관한 저온공기 속도 측정법 적용 및 검증)

  • Yoo, Ki-Soo;Jeong, Kwon-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.663-668
    • /
    • 2012
  • Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue-gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong #2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.

A Computation Method of B-coefficient With Static Voltage Dependent Load Model (정적 전압의존형 부하모델을 적용한 B계수 산정법)

  • Lee, Myung-Hwan;Chae, Myung-Suk;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.218-220
    • /
    • 1997
  • In power system, economic dispatch problem is to minimize fuel cost with inequality constraints of generator output. To solve this problem it is very important to express power loss equation that have Quadratic function of generator power included B-coefficient. This paper presents a method in determining B-coefficient by use A-matrix that is calculated by power flow considering voltage dependent static load model. The proposed algorithm is tested with IEEE 6 bus sample system, which shows the result in each cases by the change of load component factor.

  • PDF