• Title/Summary/Keyword: Power Flow Congestion

Search Result 47, Processing Time 0.019 seconds

Optimal Siting of UPFC for Reducing Congestion Cost by using Shadow Prices

  • Lee, Kwang-Ho;Moon, Jun-Mo
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.21-26
    • /
    • 2001
  • As competition is introduced in the electricity supply industry, congestion becomes a more important issue. Congestion in a transmission network occurs due to an operating condition that causes limit violations on the transmission capacities. Congestion leads to inefficient use of the system, or causes additional costs (Congestion cost). One way to reduce this inefficiency or congestion cost is to control the transmission flow through the installation of UPFC (Unified Power Flow Controller). This paper also deals with an optimal siting of the UPFC for reducing congestion cost by using shadow prices. A performance index for an optimal siting is defined as a combination of line flow sensitivities and shadow prices. The proposed algorithm is applied to the sample system with a condition, which is concerning the quadratic cost functions. Test results show that the siting of the UPFC is optimal to minimize the congestion cost by the proposed algorithm.

  • PDF

A Study of Reducing Congestion Cost using Decoupled Optimal Power Flow (분할 최적조류계산을 이용한 송전선 혼잡비용 감소 연구)

  • Jeong, Yun-Ho;Lee, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.107-109
    • /
    • 2000
  • This paper presents an algorithm for reducing congestion cost using decoupled optimal power flow. The main idea of this algorithm is to reduce the reactive power flows on the congested lines in reactive power optimization. New objective function for reducing congestion cost is proposed in the reactive formulation by introducing the shadow prices for congested lines. The proposed algorithm is tested for IEEE 14-bus sample system, and the results are presented and discussed.

  • PDF

Evaluation of Congestion Cost and Loss Cost using DC Load Flow (직류조류계산을 이용한 혼잡비용과 손실비용 평가)

  • Bae, In-Su;Song, Woo-Chang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.93-98
    • /
    • 2012
  • Economics of available alternatives in the transmission planning are evaluated by the investment cost, loss cost and congestion cost. Congestion/loss cost is calculated in many years and many load levels by unit commitment of generators, optimal dispatch, load flow, judgement about transmission congestion and re-dispatch to reduce the congestion. The greatest difficulties to introduce variable optimization techniques on the transmission planning is the convergence of load flow. In this paper, economics in the transmission planning are evaluated using DC load flow, and case study is conducted on the Korea power system by proposed congestion/loss calculation methods.

The Optimal Operating Points of Multiple UPFCs for Enhancing Power System Security Level (전력시스템 안전도 향상을 위한 다기 UPFC의 최적 운전점 결정)

  • 임정욱;문승일
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.8
    • /
    • pp.388-394
    • /
    • 2001
  • This paper presents how to determine the optimal operating points of Unified Power Flow controllers (UPFC) the line flow control of which can enhance system security level. In order to analyze the effect of these devices on the power system, the decoupled model has been employed as a mathematical model of UPFC for power flow analysis. The security index that indicates the level of congestion of transmission line has been proposed and minimized by iterative method. The sensitivity of objective function for control variables of and UPFC has been derived, and it represents the change in the security index for a given set of changes in real power outputs of UPFC. The proposed algorithm with sensitivity analysis gives the optimal set of operating points of multiple UPECs that reduces the index or increases the security margin and Marquart method has been adopted as an optimization method because of stable convergence. The algorithm is verified by the 10-unit 39-bus New England system that includes multiple FACTS devices. The simulation results show that the power flow congestion can be relieved in normal state and the security margin can be guaranteed even in a fault condition by the cooperative operation of multiple UPECs.

  • PDF

A Case Study of the Congestion Management for the Power System of the Korea Electric Power Cooperation (한전 실계통의 혼잡처리에 대한 적용사례)

  • Song, Gyeong-Bin;Im, Gyu-Hyeong;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.12
    • /
    • pp.549-555
    • /
    • 2001
  • Due to the development of information technology, the operating power systems under the deregulated environment has the advantages of a introduction of the market function, a competition in sales and purchases of Power, as well as the difficulty of maintaining reliability on the same or high level with it in a monopolistic market. This paper presents a basic scheme of the congestion management in the Korea electricity market under the deregulated environment. We investigated some cases of the congestion management in the world and the effects of the congestion management in the power systems. A basic idea of the congestion management in the Korea is presented based on the analysis of transmission congestion management in the competitive electricity market.

  • PDF

A Congestion Management Approach Using Probabilistic Power Flow Considering Direct Electricity Purchase

  • Wang, Xu;Jiang, Chuan-Wen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.820-831
    • /
    • 2015
  • In a deregulated electricity market, congestion of the transmission lines is a major problem the independent system operator (ISO) would face. Rescheduling of generators is one of the most practiced techniques to alleviate the congestion. However, not all generators in the system operate deterministically and independently, especially wind power generators (WTGs). Therefore, a novel optimal rescheduling model for congestion management that accounts for the uncertain and correlated power sources and loads is proposed. A probabilistic power flow (PPF) model based on 2m+1 point estimate method (PEM) is used to simulate the performance of uncertain and correlated input random variables. In addition, the impact of direct electricity purchase contracts on the congestion management has also been studied. This paper uses artificial bee colony (ABC) algorithm to solve the complex optimization problem. The proposed algorithm is tested on modified IEEE 30-bus system and IEEE 57-bus system to demonstrate the impacts of the uncertainties and correlations of the input random variables and the direct electricity purchase contracts on the congestion management. Both pool and nodal pricing model are also discussed.

Assessment of Total Transfer Capability for Congestion Management using Linear Programming (선형계획기반 선로혼잡처리에 대한 총송전용량 평가)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.447-452
    • /
    • 2006
  • This paper presents a scheme to solve the congestion problem with phase-shifting transformer(PST) controls and power generation controls using linear programming method. A good design of PST and power generation control can improve total transfer capability(TTC) in interconnected systems. This paper deals with an application of optimization technique for TTC calculation. Linear programming method is used to maximize power flow of tie line subject to security constraints such as voltage magnitude and real power flow in interconnected systems. The results are compared with that of repeat power flow(RPF) and sequential quadratic programming(SQP). The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

The analysis of nodal prices in the optimal power flow including a load model and the congestion of transmission lines (부하모델과 송전선로 혼잡을 고려한 최적조류계산의 모선가격 분석)

  • Kim, Moon-Young;Baek, Young-Sik;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.425-427
    • /
    • 2002
  • In a deregulated power market, a load model considered the characteristics of electric consumers is required and the congestion management of transmission lines should be resolved in a point of economic benefits. It is essential that the optimal power flow algorithm is applied to manage transmission line congestion. Therefore, in this paper, we implement the optimal power flow with object function of social welfare maximization based linear programming and analysis the nodal prices for generations and loads through a numerical study.

  • PDF

An Analysis of Congestion Cost for Electric Power Transmission in Consideration of Uncertainty of Future Electric Power System (미래 전력 계통의 불확실성을 고려한 송전혼잡비용 분석)

  • Park, Sung Min;Kim, Sung Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.131-137
    • /
    • 2014
  • It is expected that there will be delay of scheduled transmission network reinforcement and huge investment of renewable energy resources in Korea. As transmission capacity expansion delayed, supplying power to Seoul metropolitan area will not be increased as scheduled. In addition, uncertain renewable energy out of Seoul metropolitan area can cause transmission congestion in the future power system. These two combining effects will make the difference in locational marginal prices(LMP) and congestion costs increase. In that sense, this paper will analyze how much the congestion costs for Korea power system are incurred in the future power system. Most of previous approaches to analyze the congestion costs for electric power system are based on the optimal power flow model which cannot deal with hourly variation of power system. However, this study attempted to perform the analysis using market simulation model(M-Core) which has the capability of analyzing the hourly power generation cost and power transmission capacity, and market prices by region. As a result, we can estimate the congestion costs of future power system considering the uncertainty of renewable energy and transmission capacity.

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.