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Abstract – In a deregulated electricity market, congestion of the transmission lines is a major 
problem the independent system operator (ISO) would face. Rescheduling of generators is one of the 
most practiced techniques to alleviate the congestion. However, not all generators in the system 
operate deterministically and independently, especially wind power generators (WTGs). Therefore, a 
novel optimal rescheduling model for congestion management that accounts for the uncertain and 
correlated power sources and loads is proposed. A probabilistic power flow (PPF) model based on 
2m+1 point estimate method (PEM) is used to simulate the performance of uncertain and correlated 
input random variables. In addition, the impact of direct electricity purchase contracts on the 
congestion management has also been studied. This paper uses artificial bee colony (ABC) algorithm 
to solve the complex optimization problem. The proposed algorithm is tested on modified IEEE 30-bus 
system and IEEE 57-bus system to demonstrate the impacts of the uncertainties and correlations of the 
input random variables and the direct electricity purchase contracts on the congestion management. 
Both pool and nodal pricing model are also discussed. 
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1. Introduction 
 
Congestion of transmission lines occurs when the 

networks fail to accommodate all the desired transactions 
due to the system operating limits such as branch power 
flow limits, voltage limits, etc. Congestion in one or more 
transmission lines leads to higher risk of electricity con-
sumption, even unexpected widespread power blackouts 
[1]. Various congestion management approaches suitable 
for traditional power systems without intermittent energy, 
have been reported in recent literatures. However, the 
global rapid growth of wind power capacity increases the 
uncertainties in congestion management. Therefore, it is 
necessary to propose an efficient and reliable method to 
process congestion problem with random variables. 

Optimal rescheduling of generators is generally adopted 
to manage the congestion for its low-cost and simplicity. 
Ashwani Kumar proposed a zonal sensitivity-based optimum 
real and reactive power generation rescheduling method for 
congestion management [2]. Another technique for optimum 
selection of generators to be rescheduled is demonstrated 
in [3], which is based on generator sensitivities to the 
power flow on congested lines. Congestion management 
techniques in different deregulated electricity markets are 
estimated in [4]. Besides, congestion management scheme 
based on optimal power flow (OPF) is an excellent 

alternative method in a power system with deterministic 
operational constraints.  

An OPF-based congestion management approach 
proposed in [5] is based on the nodal pricing framework 
and the pool model. Another OPF-based scheme which 
aims to minimize both congestion and service costs is 
presented in [6]. Various kinds of traditional congestion 
management models are essentially the OPF problems 
associated with security constraints. As system with high 
level wind power integration has enhanced uncertainties, 
a noval probabilistic OPF-based congestion management 
approach is addressed in this paper. 

Cumulants and Gram-Charlier expansion theory are 
combined to approximate the probabilistic distribution 
functions (PDFs) of transmission line flows in [7]. As the 
cumulant method can’t be used to process correlated input 
random variables, a two PEM [8] is applied. Literature [9] 
reveals that the 2m+1 PEM provides the best performance 
among the Hong’s PEMs. So this paper uses the 2m+1 
PEM [9-10] to process the PPF in the congestion manage-
ment. In recent years, compared with other heuristic 
mothods [11-14], ABC algorithm proposed by D. Karaboga 
[11] for fewer parameters, faster convergence and higher 
precision [12] has been widely used to solve complex 
nonlinear optimization problems, such as congestion 
management [13], OPF [14], etc. 

Congestion management methods available in most 
literatures use simple power flow method without 
considering the uncertainties and correlations of the input 
variables. In this paper, the ABC algorithm combined 
with an extended 2m+1 PEM method is proposed to 
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process the complex congestion problem with correlated 
random injections. Moreover, the impact of direct electricity 
purchase on the results of congestion is discussed. 

This paper is organized as follows. The mathematical 
formulation of the congestion management model is 
presented in Section 2. Section 3 gives the PPF model 
coupled with correlated variables in detail. In Section 4, the 
ABC algorithm coupling with the PPF model to solve the 
complex congestion problem is proposed. Section 5 gives 
several case studies. Finally, Section 6 provides the 
relevant conclusions. 

 
 

2. Mathematical Formulation 
 
Congestion management is an optimization problem 

aims to minimize the congestion cost while satisfying the 
system and unit constraints. This section gives the 
congestion management model based on both pool and 
nodal pricing model in detail. 

 
2.1 Objective functions 

 
2.1.1 Cost of rescheduling in the pool model [15-16] 

 
In the pool model, the ISO determines the market-

clearing price Ci,M and the output PGi of generator i without 
considering system constraints aiming to minimize the cost 
of electricity purchase. The original total cost of electricity 
purchase can be calculated by: 
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where NG is the number of generators. When the congestion 
occurs, the cost of “constraint on” and “constraint off” 
generators are: 
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where on

GN and off
GN are the number of “constraint on” and 

“constraint off” generators, respectively; iGP¢ is the output 
of generator i after rescheduling; ,i MC¢  is the actual price 
bids submitted by generator i. Combining (1-2), the cost of 
rescheduling in the pool model is obtained: 
 
 1 on off orgC C C C= + -  (3) 

 
In the above formula, the superscript ‘ - ’ denotes the 

expectation of the random variables. 

2.1.2 Cost of breach of direct electricity purchase contract 
 
Actually, the direct electricity purchase contract is a kind 

of bilateral transactions [16]. If there is no static and 
dynamic security violation, all the requested contracts or 
transactions should be satisfied. Otherwise, a breach of 
contract will occur. Mathematically, the breach cost of a 
direct electricity purchase contract at generator i can be 
calculated according to [16] as follows: 
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where Pi,dc is the trading power of the direct electricity 
purchase contract of generator i, P’

i is the actual active 
power of generation i, and k is a penalty coefficient of 
breach of contract.  

 
2.1.3 Congestion cost in different modes 

 
Combining (3-4), the objective function in the pool 

mode is: 
 

 Minimize 1 1 2f C wC= +              (5) 
 

where w is a penalty coefficient trying to perform all the 
direct electricity purchase contracts. 

Though the formula (4) is still applicable in the nodal 
pricing model [5], the objective function is modified to: 
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where S is the set of the two endpoints of the branches; Pij 
is the active power flow from bus i to j; LMPi and LMPj is 
the nodal prices of bus i and j, which are two endpoints of 
a branch, respectively. All the nodal prices are calculated 
by minmizing the cost of generation. 

 
2.2 Constrains and limits 

 
2.2.1 Power flow equations 
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where Pi, Qi and Vi are the active power, reactive power 
and voltage amplitude of bus i, respectively; Gij and Bij are 
conductance and susceptance between bus i and j, 
respectively; Nbus is the number of buses; θij is the phase 
angle difference between bus i and j. 

 



A Congestion Management Approach Using Probabilistic Power Flow Considering Direct Electricity Purchase 

 822 │ J Electr Eng Technol.2015; 10(3): 820-831 

2.2.2 Power constraints of generators 
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where

i

min
GP and

i

max
GP are the minimum and maximum active 

power of generator i;
i

min
GQ and

i

max
GQ are the minimum and 

maximum reactive power of generator i; PGi and QGi are 
the active and reactive power of generator i. 

 
2.2.3 Bus voltage limits 

 
 ( ) , 1, 2, ,min max

i i i i busPro V V V i N£ £ ³ = Ka   (9) 
 

where Pro(·) denotes the probability of the event 
(·); min

iV and max
iV are the lower and upper bound of voltage 

amplitude of bus i; Vi is the voltage amplitude of bus i; αi is 
the confidence level of the bus i’s constraint. 

 
2.2.4 Line power flow limits 

 
 ( ) , 1, 2, ,max

i i i branchPro PF PF i N£ ³ = Kb  (10) 
 

where max
iPF are the upper limit of transmission power 

flow of branch i; iPF is the power flow of branch i; βi is the 
confidence level of the branch i’s constraint; Nbranch is the 
number of the branches. 

 
2.2.5 Direct electricity purchase contract 

 
In a practical system, not all of the generators have 

direct electricity purchase contract with loads and vice-
versa. Mathematically, if a generator at bus i have this 
contract the active power inequality constraint of (8) is 
modified into: 
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For the objective function has already considered the 

penalty term of this constraint violation, only constraint (8) 
need to be taken into account. 

 
 

3. PPF Model Managing To Process Correlations 
 
To perform the impact of the uncertainties of loads and 

wind farms (WFs), probabilistic models are established. 
Since the correlations among loads and WFs do affect the 
power flows [17], a modified 2m+1 PEM [10] capable of 
processing the correlations is introduced. 

 
3.1 Probabilistic load model 

 
Generally, load demand is supposed to follow a normal 

distribution [10, 17]. So the active and reactive power of 

load bus L can be expressed by: 
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where LPm and LPs are the mean and standard deviation of 
active load; LQm and LQs are the mean and standard 
deviation of reactive load; exp(·) represents the exponential 
function. 

 
3.2 Probabilistic correlated WFs model 

 
Different from the probabilistic load model, the output 

of WFs depends on the wind speed which follows the 
Weibull distribution. Thus, the joint PDF of the correlated 
WFs’ output at bus t can be obtained through the correlated 
wind speed using Monte Carlo method. 

The PDF and cumulative distribution function (CDF) of 
the wind speed vj of the j-th WF at bus t are as follows 
[10]: 
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where kj is the shape factor and λj is the scale factor of vj. 
Weibull distributed wind speed can be transformed into 
normally distributed variable through Nataf transformation. 

The correlated wind speed sampling matrix ,s WFs tN NV ´ =  
,1 2[ , , , ]

WFs tNv v vL (Ns represents the sampling times) of the 
NWFs,t WFs at bus t can be generated as follows: 

1. Generate a matrix , ,1 2[ , , , ]
s WFs t WF tN N NR r r r´ = L  by the 

Matlab random number generator which represents 
NWFs,t independent standard normal distributed random 
variables. 

2. For the given correlation coefficient matrix Cg of the 
wind speeds, the modified correlation coefficient 
matrix Cmd by the Nataf transformation [19] are 
obtained using [10, 20]: 

 
 mn mnG¢ =r r  (14) 
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where and mn¢r  are the elements at m-th row, n-th 
column of Cg and Cmd, respectively; mg and ng are the 
coefficients of variation of vm and vn. Then decompose 
Cmd by the Cholesky decomposition method [10, 21] 
into Cm=LLT, where L is an inferior triangular matrix. 
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3. Using the transformation Y=LR and the inverse Nataf 
transformation vj = Fj

-1 (Φ (Y )), we can obtain the 
matrix , ,1 2[ , , , ]

s WFs t WFs tN N NV v v v´ = L  with NWFs,t Weibull 
distributed variables with a correlation coefficient 
matrix Cd. 

 
Next, the wind speed vector vj from the j-th column of V 

is used to determine the output column vector PWF,j [Ns´ 1] 
of WF j with nj WTGs at the bus t as follows: 
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where Pr is the rated power of a single WTG; vin, vr and vout 
are the cut-in, rated and cut-out wind speed, respectively; nj 
is the number of WTGs at the bus t. 

Applying V and (16), the output sampling matrix PWFs 
[Ns´ 1] of bus t with NWFs,t WFs is calculated by: 

 

 
,

,
1

WFs tN

WFs WF j
j

P P
=

= å  (17) 

 
Using PWFs, the mean μWFs,t and standard deviation σWFs,t 

of the WFs’ output at bus t can be obtained: 
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where PWFs(i) is the i-th element of PWFs. The z-th (z>2) 
order standardized central moments of the bus t with WFs 
can be calculated as: 
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So far, probabilistic models of loads and WFs have been 

established. No matter the random injections are 
continuous or discrete, the traditional 2m+1 PEM can be 
just applied to uncorrelated ones. Thus, Part C introduces a 
modified 2m+1 PEM capable of dealing with correlated 
random injections at each bus. 

 
3.3 2m+1 PEM for correlated random variables 

 
As mentioned above, independent input random variables 

are required in the 2m+1 PEM proposed in [9, 10]. For this 
purpose, the orthogonal transformation [10] based on 
Cholesky decomposition method [21] is used. A detailed 

description of the orthogonal transformation is given in 
[10], which can convert a set of correlated input variables 
into an uncorrelated one. Based on the principle of the 
2m+1 PEM [10], processing the correlations of the input 
random variables is to process the correlations of their 
standardized central moments. The 2m+1 PEM for 
correlated input random variable is as follows: 

Step 1. According to the correlation coefficient matrix of 
the input random variables p=[p1, p2,…, pm]T, obtain the 
variance-covariance matrix Cp. Then get the matrix B by 
the Cholesky decomposition method using Cp=LLT and 
B=L-1. 

Step 2. Transform the correlated input variables p into a 
new set of independent variables q=[q1, q2,…, qm]T whose 
first four central moments satisfy: 
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where pm and qm are the mean vectors of p and 
q; ps and qs are the standard deviation vectors of p and q; 
Im is the m-dimensional identity matrix; ,lq jl (j=3,4) are the 
coefficients of skewness and kurtosis of ql; bli is the 
element at the l-th row, i-th column of B. 

Step 3. Calculate the new transformed pairs (ql,k, ωl,k) of 
independent q defining the new 2m+1 PEM using follows: 
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where ,l kx  can be calculated by: 
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Step 4.  Construct the new 2m+1 points in the form 

1 ,( , , , , ), 1, 2
mq l k qq k =L Lm m and 1

( , , , , )
l mq q qL Lm m m . Let 

q2m+1,k, k=1, 2, 3, be a m´ m matrix each row of which is 
one point of the 2m+1 points with l from 1 to m. Then 
transform the 2m+1 points to the original space using 
p2m+1,k=B−1q2m+1,k. 

Step 5. Calculate the deterministic power flow for each 
row of p2m+1,k for 2m+1 times using: 
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The solution vectors si(l, k) is obtained. 
Step 6. Estimate the the j-th raw moment using: 
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And the PDF and CDF of the output random variable si 

can be calculated through Gram-Charlier expansion [7, 16]: 
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where ( )×j and ( )F × are the PDF and CDF of standard 
normal distribution, respectively; ci are constant 
coefficients of which detailed calculation can refer to [7, 
16]; ism and iss are the mean and standard deviation of si. 

 
 

4. Solution Method 
 
A PPF model capable of managing correlated random 

injections has been described in the previous section to 
simulate the uncertainties and correlations in a congestion 
management problem. This section will give a detailed 
introduction of the ABC algorithm coupling with the PPF 
model to solve the complex congestion model. 

 
4.1 Overview of the ABC algorithm 

 
Initially, the ABC algorithm is proposed for optimizing 

numerical unconstrained problems, which is a swarm-
based meta-heuristic algorithm [22]. Then it is modified in 
[23] to handle constrained optimization problems.  

In the ABC algorithm, every food source represents a 
possible solution of an optimization problem, and nectar 
amount of a food source represents the fitness of the 
corresponding food source. The process of artificial bees’ 
searching for the best food source is the optimization 
process. The colony of artificial bees includes three groups 
of bees: employed bees, onlookers and scout bees. The 
search of food source implemented by the artificial bees 
can be summarized as following: 

1. Employed bees find the food source within the 
neighborhood of the previous food source in their 
memory and record the nectar amount of the new food 
source. 

2. According to the information offered by the employed 
bees, onlookers judge the merits of the food source and 

select a food source probabilistically. 
3. Employed bee at abandoned inferior food source 

becomes a scout bee and starts search a new food 
source randomly. 

 
The main steps of the ABC algorithm are as follows: 
Step 1. Initialize the randomly distributed food-source 

positions Xi=[xi,1, xi,2, …, xi,d] (solutions population) 
according to the upper and lower limits of the decision 
variables, where i=1,2,…,N (N represents the number of 
employed bees, onlooker bees and food sources), xi,j 
(j=1,2,…,d) represents the j-th decision variable of the 
solution Xi and d is the number of decision variables. 

Step 2. Compute the nectar amount of the food source Xi 
using their fitness values: 
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where f is the objective function value at solution Xi. 

Step 3. Determine neighborhood positions for the 
employed bees according to the exiting food-source 
positions using: 

 
 , , , ,( )new old old

i j i j i j k jx x U x x= + -  (28) 
 

where xi,j is the j-th parameter of solution Xi that was 
selected to be modified; U is a random number between [-
1,1]; k i¹ and {1,2, , }k NÎ K ; {1,2, , }i NÎ K ;

{1,2, , }j dÎ K . Then record the fitness values of the new 
neighborhood positions using (27). 

Step 4. If the fitness value of a new neighborhood 
position is larger than the old one, replace the old one with 
the new one; otherwise, keep the old one. 

Step 5. Calculate the selection probability Probi of the 
solution Xi for the outlook bees applying: 

 

 0.9 0.1, 1,2, ,i
i
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Fitness
Prob i N

Fitness
= ´ + = K  (29) 

 
Step 6.  Select the onlooker bee depending on the 

probability value. For the selected onlooker bee Xi, a new 
neighborhood position is created using (28); else go to Step 
8. Then record the fitness values of the new neighborhood 
positions using (27). 

Step 7. Follow the Step 4. 
Step 8. Find the abandoned food sources for scout bees. 

If a food source is still not updated by a predetermined 
number of trials known as ‘limit’ value maxLim , then that 
food source is abandoned and the corresponding employed 
bee becomes a scout. Otherwise, no abandoned food 
sources exist and go to Step 10. 

Step 9. For an abandoned food source Xi, update it with 
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a completely new food source Vi through: 
 

 , ( ), 1, 2, ,min max min
i j i j i iv x u x x j d= + - = K  (30) 

 
where ui is a random number between [0,1]; max

ix  and 
min
ix are the maximum and minimum parameter of Xi, 

respectively. 
Step 10. Storage the global best solution obtained so far. 
Step 11. If the current iteration number (Iter) is larger 

than the maximum iteration number of the search process 
(Itermax), stop and output the results. Otherwise, go back to 
Step 3. 

There are three control parameters need to be set: 1) 
food-source size N, representing the number of employed 
bees or onlooker bees; 2) ‘limit’ value, which is the number 
of trials determining a food-source position abandoned or 
not (at least 0.5´ N´ d suggested in [11]); 3) Itermax, that is 
the maximum iteration number. 

 
4.2 Congestion management strategy 

 
After alleviating congestion in transmission grids, the 

congestion may occur again due to the uncertainties and 
correlations of loads and wind power. Moreover, direct 
electricity purchase contracts affect the rescheduling of 
generators obviously. In case of congestion again, all the 
generators participating in congestion management must be 
rescheduling properly. This paper proposes a congestion 
management approach using PPF considering direct 
electricity purchase. If congestion cannot be removed just 
by rescheduling, a breach of contract is done between 
contracted parties based on its liquidated damage. 

This paper uses the following methods to handle the 
constraints (7-10). Mathematically, equality constraint (7) 
is solved during the determined power flow calculation. 
Inequality constraint (8) can be handled as follows: 
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Reactive power constraints of generators are processed 

by the similar method. Besides, if reactive power 
generation of any PV bus gets violated, the PV bus is 
treated as PQ bus. 

The chance constraints (9) and (10) are handled as 
follows: 

 
4.2.1 Calculate the penalty terms: 
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where Pen_V and Pen_P are the penalty terms of bus 
voltage limits and line power flow limits; ΔVi and ΔPi are 
computed by: 
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atisfieds
P

P P else
ì

D = í -î
 (33) 

 
where Pro(Vi<Vi

down) = 1–αi, Pro(Vi>Vi
up) = 1–αi, and 

Pro(|Pi|>Pi
up) = 1–βi. 

 
4.2.2 Modify the original objective function f into: 

 
 _ _new V Pf f w Pen V w Pen P= + +  (34) 

 
where wV and wP are the penalty factors. 

 
4.3 ABC algorithm coupling with PPF model 

 
ABC algorithm coupling with PPF model is proposed 

to solve the congestion management problem with 
correlated random injections. The flowchart of the proposed 
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Fig. 1. Flowchart for the ABC algorithm coupling with PPF 
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ABC algorithm is illustrated in Fig. 1. Further studies in 
[22-28] has proved that the ABC algorithm has a better 
performance in results and solutions compared with other 
popular population-based and heuristic optimization 
algorithms. 

 
 

5. System Studies 
 
The proposed congestion management approach has 

been illustrated on the modified IEEE 30-bus test system 
[29-30] and IEEE 57-bus test system [31] in the pool 
model in 5.1 and 5.2. The performance of the ABC 
algorithm is compared with that of evolutionary algorithm 
(EA) [32] and particle swarm optimization (PSO) [32] in 
5.1. Similar study of IEEE 30-bus is conducted in nodal 
pricing model in 5.3. All the studies are implemented in 
MATLAB 2012a. 

 
5.1 Modified IEEE 30-bus case study 

 
The modified IEEE 30-bus test system consists of 6 

generators (Table 1), 41 branches, 20 load buses whose 
data are from Table 2-3 of [30], and 2 WFs located at bus 
28 as shown in Fig. 2. The active power consumption of 
each load is considered to be normally distributed with 
means equal to the values provided in Table 3 of [30] with 
the value at bus 5 zeroed out, and standard deviations of 
10% with respect to such mean values. For simplicity, the 
power factor of each load is kept constant. Each WF 

contains five 3MW WTGs and the wind speed is assumed 
to follow the Weibull distribution with scale and shape 
parameters 9, 2.205, respectively. Both WFs are correlated 
with a correlation coefficient 0.9 and a power factor 0.9 lag. 
Besides, the involved parameters are set as follows: wV=106, 
wP=106, Itermax=200 and Limmax=100. 

Firstly, the original outputs of the generators are 
calculated by minimizing the electricity purchase cost 
without constraints (9)-(11). Here, the output of the WFs 
and the loads are assumed to be independent and the 
correlation coefficients among load buses are rL. Table 2 
gives the details of the line congestion in condition of the 
original outputs with rL=0, 0.2, 0.4, 0.5, 0.6, 0.8, 0.9, 
respectively. From Table 2, with rL increased from 0 to 0.9, 
the standard deviation of the power flow through the 
congested line 6-8 grows from 3.7584MVA to 3.9340 
MVA, which means a 4.67% increase, while the expected 
power flow has no significant increase. Also, if the 
confidence level of the chance constraints (9)-(10) is 0.95, 
branch 6-8 is the only congested line. 

Fig. 3 illustrates the evolution of the congestion 
probability of branch 6-8 with rL=0.5. As the line limit 
increase from 32MW to 40MW, the congestion probability 
decrease from 0.7662 to 0.0854. In order to obtain a wide 
range of feasible region for congestion management, the 
line limit of branch 6-8 is raised to 40MW. Table 4 gives 
the simulated results of the congestion management with 
rL = 0.5 under different confidence levels. From the table, 
the cost of congestion management increases obviously 
with the confidence level raises, especially when 
αi = βi>0.95. What’s more, when αi = βi = 0.97, Pen_P>0 
which means the line congestion can’t be eliminate just by 
reschedule the generators. To avoid the violations without 
load shedding, the line connected with or near the WFs 
must be expanded. 

Table 2. Probable congested line details of 30-bus system 
with different rL (Line limit 32MVA) 

rL 
Probable 

Congested  
Line 

Expected  
Power Flow  

[MVA] 

Standard 
Deviation  
[MVA] 

Congestion 
Probability  

[p. u.] 
0 6-8 34.7745 3.7584 0.7788 

0.2 6-8 34.7752 3.7982 0.7724 
0.4 6-8 34.7758 3.8376 0.7761 
0.5 6-8 34.7762 3.8571 0.7662 
0.6 6-8 34.7765 3.8766 0.7695 

6-8 34.7772 3.9105 0.7771 0.8 21-22 26.8959 2.4617 0.0147 
6-8 34.7775 3.9340 0.7337 0.9 21-22 26.9009 2.5558 0.0308 

 
Table 3. Comparison results of different algorithms 

Expected power flow 
[MVA] Method Congestion cost 

[$/h] 
line 6-8 Line 6-28 

ABC 11.7253 33.7879 11.1362 
EA 12.6368 33.7889 11.5247 

PSO 12.2429 33.7878 11.4813 
 

 
 Fig.2. Modified IEEE 30-bus test system 

 
Table 1. Generator data for modified 30-bus system 

Bidding 
coefficients Bus 

No. 
Pmax 

[MW] 
Pmin 

[MW] 
Qmax 

[MW] 
Qmin 

[MW] 
a b 

1 200 50 250 -20 0.0075 2.00 
2 80 20 100 -20 0.035 1.75 
3 40 12 60 -15 0.05 3.00 

22 50 15 80 -15 0.125 1.00 
23 30 10 50 -10 0.05 3.00 
27 35 10 80 -15 0.01668 3.25 

Bidding function: fB(P)= a P + b $/MWh 
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According to the previous study, the parameters of the 
system are set as follows: limit of line 6-8 is 40MW, 
rL=0.5 and αi = βi = 0.95. Different combinations of market 
structures comprising pool model and mix of pool plus 
direct electricity purchase contracts taken for study are: 
P: pool model without direct electricity purchase contracts 

independent; 
P1: pool model with one direct electricity purchase 

contract between buses 2–8; 
P2: pool model with two direct electricity purchase 

contracts between buses 2–8 and 27–7; 
P3: pool model with two direct electricity purchase 
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Fig. 3. Line limit (line 8-9) effect on the congestion 

probability 

P P1 P2 P3 P4 P5
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Different Market Model

C
ha

ng
e 

in
 A

ct
iv

e 
Po

w
er

 G
en

er
at

io
n 

[p
.u

.]

 

 

G1 G2 G27

 
Fig. 4. Active power rescheduled of generators for modified 

30-bus system 
 

Table 4. Confidence level effect on results of congestion management (rL=0.5) 

Probable congested line Solution 
Outputs of generators [MW] αi=βi Line Congestion 

probability [p.u.] 
Limit 

[MVA] 
Expected 

flow [MVA] 
Congestion 

probability [p.u.] G1 G2 G13 G22 G23 G27 
Congestion 
cost [$/h] Pen_V Pen_P 

0.90 6-8 0.0854 40 34.7762 0.0854 99.72 26.02 12 15 10 11.80 0 0 0 
0.93 6-8 0.0854 40 34.3999 0.0700 94.58 27.03 12 15 10 16.17 4.1960 0 0 

6-8 0.0854 40 34.1156 0.0600 0.94 6-28 0 32 10.2649 0.0005 91.66 26.45 12 15 10 19.57 7.2926 0 0 

6-8 0.0854 40 33.7879 0.0500 0.95 6-28 0 32 11.1362 0.0123 88.36 25.62 12 15 10 23.61 11.7253 0 0 

6-8 0.0854 40 33.3951 0.0400 0.96 6-28 0 32 13.3372 0.0368 84.60 24.28 12 15 10 28.63 18.3981 0 0 

6-8 0.0854 40 32.8969 0.0300 
6-28 0 32 16.8841 0.0930 0.97 

25-27 0 16 14.5302 0.0217 
19.92 80 12 15 11.92 35 220 0 0.38 

 
Table 5. Simulated cases for modified 30-bus system (total load 189.2MW) 

Solution 
Outputs of generators [MW] Model Probable  

congested line Expected flow 
[MVA] 

Congestion probability 
[p. u.] G1 G2 G13 G22 G23 G27 

Congestion cost  
[$/h] 

6-8 33.7879 0.0500 P 
6-28 11.1362 0.0123 

88.36 25.62 12 15 10 23.61 11.7253 

6-8 33.7888 0.0500 P1 6-28 11.1319 0.0122 83.88 30.00 12 15 10 23.60 12.5455 

6-8 33.7888 0.0500 P2 6-28 11.1319 0.0122 83.88 30.00 12 15 10 23.60 12.5455 

6-8 33.7879 0.0500 P3 6-28 11.1335 0.0122 72.48 41.20 12 15 10 23.62 22.2343 

6-8 33.7879 0.0500 P4 6-28 11.1335 0.0122 72.48 41.20 12 15 10 23.62 22.2343 

6-8 33.2481 0.0368 P5 
6-28 14.3340 0.0500 

65.41 41.20 12 15 10 30.58 65.0277 
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contracts between buses 2–8, 12; 
P4: pool model with three direct electricity purchase 

contracts between buses 2–8, 12 and 27-7; 
P5: pool model with four direct electricity purchase 

contract between buses 2–8, 12 and buses 27–7, 24.  
 
Here, we assume that each direct electricity purchase 

contract is the total active load consumption of the load bus, 
k=8 and w=10.  

Table 3 gives the comparison results of the performance 
of ABC algorithm, EA [32] and PSO [32] for market 
structure P using the same population and iteration. From 
the table, the ABC algorithm has a better performance in 
the optimization results and can be used to solve the 
congestion problem properly. 

The detailed simulated results and rescheduling of 
generators are present in Table 5 and Fig. 4. The table and 
the figure demonstrate that direct electricity purchase 
contracts decrease the feasible region of generation 
rescheduling. Comparing P1-P2 and P3-P4, the added 
contract between buses 27-7 have no effect on the existing 
contracts. However, some added contract may affect the 
rescheduling results significantly based on the comparison 
of P-P1, P1-P3 and P4-P5. Especially, in model P5, G27 
needs to cut the contract by 0.92MW to make the system 
relieve the probable congestions. This can guide the 
generators to sign rational direct electricity purchase 
contracts. 

 
5.2 Modified IEEE 57-bus case study 

 
The modified IEEE 57-bus test system [31] consists of 7 

generators, 80 branches and 42 load buses. WFs are located 
at bus 7 and 46 and each of them has 2 WFs with a 
correlation coefficient 0.9 and a power factor 0.9 lag. The 
two WF buses are correlated with a correlation coefficient 
0.8 but they are both independent with other load buses. 
The characteristics of loads are set as the 30-bus system. 
Besides, we set the limit of branch 8-9 215MVA, rL=0.5, 
αi=βi=0.95, wV=109, wP=109, Itermax=200, Limmax=100, k=8 
and w=103. Table 6 gives the detailed data of generators 
for the modified 57-bus system. 

Different combinations of market structures comprising 
pool model and mix of pool plus direct electricity purchase 
contracts are as follows: 
C: pool model without any direct electricity purchase 

contracts. 
C1: pool model with a direct electricity purchase contract 

between buses 6-8. 
C2: pool model with two direct electricity purchase 

contracts between buses 6-8 and 8-12 (320MW). 
C3: pool model with two direct electricity purchase 

contracts between buses 6-8, 13. 
C4: pool model with three direct electricity purchase 

contracts between buses 6-8, 13 and 8-12 (320MW). 
C5: pool model with three direct electricity purchase 

contracts between buses 6-8, 13 and 8-12 (350MW).  
 
Here, all direct electricity purchase contracts are the total 

active load consumption of the lo ad bus except those with 
a brackets mark. 

Table 7 and Fig. 5 depict the simulated results for 
modified IEEE 57-bus system in different market structures. 
Original outputs of generators are optimization results 
aiming to minimize the electricity purchase cost without 
constraints. From Table 7, congestion cost increases as the 

Table 6. Generator data for modified 57-bus system 

Bidding 
coefficients Bus 

No. 
Pmax 

[MW] 
Pmin 

[MW] 
Qmax 

[MW] 
Qmin 

[MW] 
a b 

1 500 300 200 -140 0.0075 2.00 
2 100 40 50 -30 0.0350 1.75 
3 140 10 60 -10 0.1250 1.00 
6 400 80 25 -40 0.01668 3.25 
8 500 300 200 -140 0.0075 2.00 
9 100 40 9 -10 0.0500 3.00 

12 200 60 255 -150 0.0500 3.00 
Bidding function: fB(P)= a P + b $/MWh 
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Fig. 5. Active power rescheduled of generators for modified 

57-bus system 
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Fig. 6. CPD of power flow in line 8-9 (model C) 
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number of direct electricity purchase contracts grows 
overall. Some direct electricity purchase contracts added to 
the system have no effects on the original system 
(comparing C1-C2) but some may have (comparing C3-
C4). In C5, in order to remove the congestion the contract 
between buses 8-12 is decreased by 8.35MW. As a result, 
signing direct electricity purchase contracts rationally can 
help relief congestion somehow. Cumulative probability 
distribution (CPD) of branch 8-9 before and after 
rescheduling for market structure C is presented in Fig. 6. 
The value of the power flow range decrease obviously 
through the rescheduling. 

 
5.3 Nodal pricing model case study of IEEE 30-bus 

 
All the relative parameters in this part are set as the same 

as those in 5.1. Similar to the previous case studies, 
different combinations of market structures comprising 
nodal pricing model and mix of nodal pricing plus direct 
electricity purchase contracts are assumed, namely N, N1, 
N2, N3, N4, N5, respectively. 

Table 8 shows the simulated optimization results for 
modified IEEE 30-bus system in nodal pricing model 
under different direct electricity purchase contracts. Based 
on the table, similar concolusions as those in 5.1 can be 
obtained. However, as the settlement of congestion cost in 
the nodal pricing model is quite different from that in the 
pool model, the results in Table 8 are quite different from 
those in Table 5. This indicates that suitable scheduling 

approaches should be adopted in different market modes. 
Also, Table 8 demonstrates that the proposed congestion 
management model capable of processing uncertainties and 
correlations can be adoptd in the nodal pricing model. 

 
 

6. Conclusion 
 
In this paper, a new congestion management approach 

based on probabilistic power flow has been presented to 
process uncertainties and correlations in congestion 
problem. The probabilistic power flow model has been 
formed based on the combined method of 2m+1 PEM and 
Cholesky decomposition. An optimal probabilistic power 
flow model minimizing the congestion cost considering 
market structures with pool, nodal pricing and direct 
electricity purchase contracts has been studied. The 
simulated results on the modified IEEE 30-bus system and 
IEEE 57-bus system reveal the following conclusions. 

1) The correlations between buses with WFs or loads have 
significant effect on the congestion probability but little 
effect on the expected power flow. 

2) Higher confidence level leads to more congestion cost. 
Dispatchers can select appropriate confidence level 
according to the demand of system operation. 

3) The congestion management approach based on 
probabilistic power flow provides a way to balance 
both congestion cost and congestion probability. 

Table 7. Simulated cases for congested line 8-9 in modified 57-bus system (total load 1250.8MW) 

Solution 
Outputs of generators [MW] Model Expected flow  

[MVA] 
Congestion probability 

[p. u.] G1 G2 G3 G6 G8 G9 G12 
Congestion cost 

[$/h] 
Original 223.7648 0.6121 409.19 88.79 27.09 154.75 373.24 63.43 66.92 0 

C 188.9704 0.0408 386.77 84.94 27.15 85.41 373.55 63.50 158.70 1107.8421 
C1 185.4570 0.0078 359.97 78.82 10 150.01 336.50 76.68 166.77 1311.3427 
C2 185.4570 0.0078 359.97 78.82 10 150.01 336.50 76.68 166.77 1311.3427 
C3 175.2216 0 359.83 75.50 10 168.06 311.83 82.34 170.76 1486.2954 
C4 180.0232 0 357.96 67.89 10 168 320 83.56 170.76 1495.0329 
C5 189.8497 0.0500 334.33 40 10 167.93 341.65 84.76 196.91 2759.9625 

 
Table 8. Simulated cases in nodal pricing for modified IEEE 30-bus system (total load 189.2MW) 

Solution 
Outputs of generators [MW] Model Probable 

congested line Expected flow 
[MVA] 

Congestion probability  
[p. u.] G1 G2 G13 G22 G23 G27 

Congestion 
cost [$/h] 

6-8 33.7876 0.0500 N 
6-28 11.2037 0.0137 

53.45 52.68 12.00 20.87 12.38 22.40 67.1183 

6-8 33.7882 0.0500 N1 6-28 11.1835 0.0133 56.01 51.21 12.00 20.34 11.48 22.80 73.3141 

6-8 33.7878 0.0500 N2 6-28 11.2841 0.0147 56.01 51.21 12.00 20.34 11.48 22.80 73.3141 

6-8 33.7879 0.0500 N3 6-28 11.1806 0.0133 56.01 51.21 12.00 20.34 11.48 22.80 73.3141 

6-8 33.7878 0.0500 N4 6-28 11.2443 0.0141 56.01 51.21 12.00 20.34 11.48 22.80 73.3141 

6-8 33.2585 0.0370 N5 
6-28 14.3340 0.0500 

50.34 54.88 12.00 16.48 10.00 30.25 112.0610 
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4) Signing direct electricity purchase contracts rationally 
can help relief the congestion without burdening 
generation rescheduling. 

5) The proposed congestion management model can be 
used in both pool and nodal pricing model. 
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