• Title/Summary/Keyword: Power Distribution Systems

검색결과 1,306건 처리시간 0.024초

Experimental Verification of Induction Phenomenon on Telecommunication Lines by Applying Its Occurrence Mechanisms Using an Artificial ELF Source Generator

  • Lee, Sang-Mu;Gimm, Yoon-Myoung;Eun, Chang-Soo
    • Journal of electromagnetic engineering and science
    • /
    • 제10권4호
    • /
    • pp.276-281
    • /
    • 2010
  • In this paper, an electromagnetic induction on a telecommunication line by the distribution line of a power provision system or a feeder line of an electrified railway system has been verified through experiments. The basic cause of induction occurrence by these practical power provision systems is the returning current through the earth. This principle has been confirmed by the experiments documented in this paper which implemented these mechanisms to incur an induction. Experimental methods were used to produce the returning current through the earth. The experiment to find a relationship between inducing strength and the distance between the two phase lines in a power provision line has also been included to confirm that, when the distance is enlarged, the induction effect increases as the cross-nullification effect of magnetic fluxes decreases. An experiment for the existence of a shielding effect by another conduction length material has been addedas a protection measure against the induction.

CREEC: Chain Routing with Even Energy Consumption

  • Shin, Ji-Soo;Suh, Chang-Jin
    • Journal of Communications and Networks
    • /
    • 제13권1호
    • /
    • pp.17-25
    • /
    • 2011
  • A convergecast is a popular routing scheme in wireless sensor networks (WSNs) in which every sensor node periodically forwards measured data along configured routing paths to a base station (BS). Prolonging lifetimes in energy-limited WSNs is an important issue because the lifetime of a WSN influences on its quality and price. Low-energy adaptive clustering hierarchy (LEACH) was the first attempt at solving this lifetime problem in convergecast WSNs, and it was followed by other solutions including power efficient gathering in sensor information systems (PEGASIS) and power efficient data gathering and aggregation protocol (PEDAP). Our solution-chain routing with even energy consumption (CREEC)-solves this problem by achieving longer average lifetimes using two strategies: i) Maximizing the fairness of energy distribution at every sensor node and ii) running a feedback mechanism that utilizes a preliminary simulation of energy consumption to save energy for depleted Sensor nodes. Simulation results confirm that CREEC outperforms all previous solutions such as LEACH, PEGASIS, PEDAP, and PEDAP-power aware (PA) with respect to the first node death and the average lifetime. CREEC performs very well at all WSN sizes, BS distances and battery capacities with an increased convergecast delay.

Beamforming Strategy Using Adaptive Beam Patterns and Power Control for Common Control Channel in Hierarchical Cell Structure Networks

  • You, Cheol-Woo;Jung, Young-Ho;Cho, Sung-Hyun
    • Journal of Communications and Networks
    • /
    • 제13권4호
    • /
    • pp.319-326
    • /
    • 2011
  • Beamforming techniques have been successfully utilized for traffic channels in order to solve the interference problem. However, their use for control channels has not been sufficiently investigated. In this paper, a (semi-) centralized beamforming strategy that adaptively changes beam patterns and controls the total transmit power of cells is proposed for the performance enhancement of the common channel in hierarchical cell structure (HCS) networks. In addition, some examples of its practical implementation with low complexity are presented for two-tier HCS networks consisting of macro and pico cells. The performance of the proposed scheme has been evaluated through multi-cell system-level simulations under optimistic and pessimistic interference scenarios. The cumulative distribution function of user geometry or channel quality has been used as a performance metric since in the case of common control channel the number of outage users is more important than the sum rate. Simulation results confirm that the proposed scheme provides a significant gain compared to the random beamforming scheme as well as conventional systems that do not use the proposed algorithm. Finally, the proposed scheme can be applied simultaneously to several adjacent macro and pico cells even if it is designed primarily for the pico cell within macro cells.

각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법의 개발 (Development of a New Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation)

  • 김홍식;문승필;최재석;노대석;차준민
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권9호
    • /
    • pp.431-439
    • /
    • 2001
  • This Paper illustrates a new numerical analysis method using a nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC(composite power system effective load duration curve) based on the new effective load model at HLll(Hierarchical Level H) has been developed also. The CMELDC can be obtained from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed in this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLll will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of MRBTS(Modified Roy Billinton Test System).

  • PDF

Classification of Grid Connected Transformerless PV Inverters with a Focus on the Leakage Current Characteristics and Extension of Topology Families

  • Ozkan, Ziya;Hava, Ahmet M.
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.256-267
    • /
    • 2015
  • Grid-connected transformerless photovoltaic (PV) inverters (TPVIs) are increasingly dominating the market due to their higher efficiency, lower cost, lighter weight, and reduced size when compared to their transformer based counterparts. However, due to the lack of galvanic isolation in the low voltage grid interconnections of these inverters, the PV systems become vulnerable to leakage currents flowing through the grounded star point of the distribution transformer, the earth, and the distributed parasitic capacitance of the PV modules. These leakage currents are prohibitive, since they constitute an issue for safety, reliability, protection coordination, electromagnetic compatibility, and module lifetime. This paper investigates a wide range of multi-kW range power rating TPVI topologies and classifies them in terms of their leakage current attributes. This systematic classification places most topologies under a small number of classes with basic leakage current attributes. Thus, understanding and evaluating these topologies becomes an easy task. In addition, based on these observations, new topologies with reduced leakage current characteristics are proposed in this paper. Furthermore, the important efficiency and cost determining characteristics of converters are studied to allow design engineers to include cost and efficiency as deciding factors in selecting a converter topology for PV applications.

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar;Kim, Kyung Youn;Hur, Seop;Kim, Sung Joong;Kim, Jung Taek
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.532-548
    • /
    • 2021
  • Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.

Single-Delta Bridge Cell MMC의 전압합성을 위한 PWM 반송파 형태에 따른 출력전압의 THD 분석 (THD Analysis of Output Voltage According to PWM Carriers in Single-Delta Bridge Cell MMC)

  • 김재명;정재정
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.526-534
    • /
    • 2022
  • The modular multilevel converter (MMC) has been widely applied to various industrial areas because of its various advantages and structural characteristics. Therefore, many methods for synthesizing the output voltage of MMC have been studied. Among these methods, phase-shifted pulse width modulation (PSPWM) is frequently used in MMC systems because it has diverse merits, such as excellent output qualities even with a small number of cells and uniform power distribution among cells. In this study, the total harmonic distortion (THD) of the output voltage is analyzed in accordance with the number of cells in one arm of a single-delta bridge cell MMC in order to compare PSPWM methods in terms of the THD of the output voltage. The physical characteristics of the triangle and sawtooth carrier waves used for the PSPWM and the mathematical modeling of output voltage are introduced. Then, the obtained results are verified through real-time simulation of a 1 MW single-delta bridge cell MMC system.

제조업체의 파워원천별 영업정책이 대리점의 판매의지에 미치는 영향에 관한 연구 (A Study on the Impacts of Manufacture's Sales Policy of Each Power Source on Sales Will by Agency)

  • 이한일;박종오
    • 경영과정보연구
    • /
    • 제29권3호
    • /
    • pp.23-50
    • /
    • 2010
  • 본 연구는 제조업체의 파원원천에 나타난 영업정책을 이용하여 지역판매 대리점의 판매의지에 미치는 영향에 관한 연구로써 제조업체와 대리점 간의 상생을 위한 영업정책을 개발하기 위한 것이다. 지역판매 대리점 관점에서의 판매의지란 "제조업체와 지역소매점을 연결하는 유통경로 상에 있는 지역판매 대리점이 제조업체에 대한 신뢰를 바탕으로 제조업체가 공급하는 제품 또는 서비스에 대하여 지역 소매상에 팔고자 하는 일방적인 의지와 사업의 지속여부의 정도를 나타내는 것"을 말한다. 본 연구 결과, 대리점 경영자들은 판매의지가 높고, 월매출액이 높으며 직원이 많은 대리점일수록 그렇지 못한 다른 대리점보다 판매의지가 상대적으로 높게 나타나는 것을 알 수 있었다. 특히 파워원천별 영업정책을 이용한 각각의 가설 검증 결과는 첫째, 보상적 파워로써 점주 판촉물의 지원, 영업활동의 지원 등이 판매의지에 유의적인 영향을 나타났다. 둘째, 강권적 파워 중에서 마진폭 인하, 상대적인 마진폭, 여신한도의 축소 등이 불만의 요소로 작용하여 판매의지에 부(-)의 영향을 주는 것으로 나타나 가설이 부분적으로 채택되었다. 셋째, 준거적 파워로써 광고지원, 지역독점력 보장, 관련업계 선도자와 거래, 회사에 대한 신뢰 형성에 필요한 영업정책들이 가장 유의한 영향으로 나타났다. 넷째, 전문적 파워인 상품의 적기공급 지연, 본사 영업사원의 상품에 대한 지식 등이 판매의지에는 유의적인 영향관계가 있는 것으로 나타났다. 이는 대리점의 평균 영업연수가 3년 이상이 약 70%를 차지하고 있어 대리점의 영업스킬이 상당히 수준으로 일상적인 영업정책지원은 만족도와 판매의지에 영향을 주지 못하는 것으로 나타났다.

  • PDF

Effects of Reflectors and Receivers on the Thermal Performance of Dish-Type Solar Power Systems

  • Ma, D.S.;Kim, Y.;Seo, T.B.;Kang, Y.H.;Han, G.Y.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.662-667
    • /
    • 2007
  • The thermal performance comparisons of the dish solar collector system are numerically investigated with mirror arrays and receiver shapes. In order to compare the performances of the dish solar collector systems, six different mirror arrays and four different receiver shapes are considered and the radiative heat flux distribution on the inside of the receiver is analyzed. A parabolic-shaped perfect mirror of which diameter is 1.5 m is considered as a reference of the mirror arrays. Five different mirror arrays of twelve identical parabolic -shaped mirror facets of which diameter are 0.4 m are proposed in this study. Their reflecting areas, which are 1.5 $m^2$, are the same. Four different receiver shapes are a dome, a conical, a cylindrical and a unicorn type. The solar irradiation reflected by mirrors is traced using the Monte-Carlo method. In addition, the radiative properties of the mirror surface can vary the thermal performance of the dish solar collector system so that the effects of the surface reflectivity and the surface absorptivity are considered. Based on the calculation, the design information of dish solar collector system for producing the electric power can be obtained. The results show that the dome type has the best performance in receiver shapes and the 2AND4INLINE has the best performance in mirror arrays except the perfect mirror.

  • PDF