• Title/Summary/Keyword: Power Distribution Systems

Search Result 1,306, Processing Time 0.025 seconds

Antenna sensor skin for fatigue crack detection and monitoring

  • Deshmukh, Srikar;Xu, Xiang;Mohammad, Irshad;Huang, Haiying
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • This paper presents a flexible low-profile antenna sensor for fatigue crack detection and monitoring. The sensor was inspired by the sense of pain in bio-systems as a protection mechanism. Because the antenna sensor does not need wiring for power supply or data transmission, it is an ideal candidate as sensing elements for the implementation of engineering sensor skins with a dense sensor distribution. Based on the principle of microstrip patch antenna, the antenna sensor is essentially an electromagnetic cavity that radiates at certain resonant frequencies. By implementing a metallic structure as the ground plane of the antenna sensor, crack development in the metallic structure due to fatigue loading can be detected from the resonant frequency shift of the antenna sensor. A monostatic microwave radar system was developed to interrogate the antenna sensor remotely. Fabrication and characterization of the antenna sensor for crack monitoring as well as the implementation of the remote interrogation system are presented.

Development of Flow Control Valve Using MR Fluid (MR유체를 이용한 유량제어 밸브)

  • Lee, Hyung-Don;Bae, Hyung-Sub;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

Quench characteristics of YBCO thin films using magnetic field source for superconducting fault current limiters

  • Lee, B.W.;Park, K.B.;Kang, J.S.;Oh, I.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.11-14
    • /
    • 2004
  • YBCO thin films have good characteristics for current limiting materials due to compact size and high current carrying capability. But the irregularities and the extreme thin thickness of YBCO films cause some difficulties in simultaneous quench and thermal shock protection. In order to solve these problems, vertical magnetic field generated from solenoid coil was applied to the YBCO element. And also to minimize the inductance caused by the serial connection of magnetic field source with superconducting elements, magnetic field source was separated from the power lines adapting protective current transformer. In this study, electric field-current (E-I) and quench characteristics of YBCO films were analyzed both by electrical measuring method and observations of bubble propagation. From the experiment results, it was revealed that the magnetic fields generated by surrounding coil could induce the uniform quench distribution for all stripes of current limiting units and finally simultaneous quenches were realized in all serial connection of YBCO elements. In addition, the separation of magnetic field source form electrical network could be good solution for simultaneous quench of YBCO films without any unnecessary effect caused by serial connection.

Distribution of Potential Rise as a Function of Shape of Grounding Electrodes

  • Gil, Hyoung-Jun;Choi, Chung-Seog;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.73-79
    • /
    • 2007
  • In order to analyze the potential rise of grounding systems installed in buildings, a hemispherical grounding simulation system was studied. Potential rise was measured and analyzed regarding the shape and distance of the grounding electrodes by using this system. The system was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The potential rise was measured in real time by the horizontal moving probe of be potentiometer. The test grounding electrodes were fabricated through reducing the grounding electrode installed in real buildings such as the ground rod, grounding grid and so on. The potential rise was displayed in a two-dimensional profile and was analyzed regarding the shapes of the ground electrodes. The potential rise of the grounding grid combined with a ground rod was the lowest of every grounding electrode tested. The proposed results can be applicable to evaluating ground potential rise in grounding systems, and the analytical data can be used to stabilize the electrical installations and prevent electrical disasters.

Construction and Characteristics Analysis on the Field System of the High Speed Motor by using Permanent Magnet Halbach Array (영구자석 Halbach 배열을 이용한 초고속 모터용 계자시스템의 구성과 특성 해석)

  • Jang, Seok-Myeong;Seo, Jin-Ho;Jeong, Sang-Seop;Choe, Sang-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.152-160
    • /
    • 1999
  • A high speed motor has been generating a lot of attention due to its performance-more light, thin, short, compact than ordinary motors. But they have low efficiency with high frequency power source because of the iron losses which may produce too much heat as well as the copper losses occurred in the rotor windings. The Halbach array can generate the strong magnetic field systems without additional magnetic materials, therefore the iron losses can be removed. In this paper, the Halbach array is applied to the field system for the high speed motor, and three dimensional FEM is used to analyze the field of the Halbach array considering with the leakage flux. The measured values of flux density are also compared with the FEM analysis. And the magnetic characteristics of the Halbach array field system are compared with those of the conventional field systems such as slot-iron type, PM-iron type. Consequently, it is confirmed that the Halbach array field system is more suitable to the high speed motor because it has high flux density, sinusoidal flux distribution than others.

  • PDF

Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field

  • Arefi, M.;Rahimi, G.H.;Khoshgoftar, M.J.
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.427-439
    • /
    • 2012
  • The present paper deals with the analytical solution of a functionally graded piezoelectric (FGP) cylinder in the magnetic field under mechanical, thermal and electrical loads. All mechanical, thermal and electrical properties except Poisson ratio can be varied continuously and gradually along the thickness direction of the cylinder based on a power function. The cylinder is assumed to be axisymmetric. Steady state heat transfer equation is solved by considering the appropriate boundary conditions. Using Maxwell electro dynamic equation and assumed magnetic field along the axis of the cylinder, Lorentz's force due to magnetic field is evaluated for non homogenous state. This force can be employed as a body force in the equilibrium equation. Equilibrium and Maxwell equations are two fundamental equations for analysis of the problem. Comprehensive solution of Maxwell equation is considered in the present paper for general states of non homogeneity. Solution of governing equations may be obtained using solution of the characteristic equation of the system. Achieved results indicate that with increasing the non homogenous index, different mechanical and electrical components present different behaviors along the thickness direction. FGP can control the distribution of the mechanical and electrical components in various structures with good precision. For intelligent properties of functionally graded piezoelectric materials, these materials can be used as an actuator, sensor or a component of piezo motor in electromechanical systems.

Integrated Chassis Control for the Driving Safety (주행 안전을 위한 통합 샤시 제어)

  • Cho, Wan-Ki;Yi, Kyong-Su;Chang, Nae-Hyuck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.646-654
    • /
    • 2010
  • This paper describes an integrated chassis control for a maneuverability, a lateral stability and a rollover prevention of a vehicle by the using of the ESC and AFS. The integrated chassis control system consists of a supervisor, control algorithms and a coordinator. From the measured and estimation signals, the supervisor determines the vehicle driving situation about the lateral stability and rollover prevention. The control algorithms determine a desired yaw moment for lateral stability and a desired longitudinal force for the rollover prevention. In order to apply the control inputs, the coordinator determines a brake and active front steering inputs optimally based on the current status of the subject vehicle. To improve the reliability and to reduce the operating load of the proposed control algorithms, a multi-core ECU platform is used in this system. For the evaluation of this system, a closed loop simulations with driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy.

Theoretical approach for uncertainty quantification in probabilistic safety assessment using sum of lognormal random variables

  • Song, Gyun Seob;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2084-2093
    • /
    • 2022
  • Probabilistic safety assessment is widely used to quantify the risks of nuclear power plants and their uncertainties. When the lognormal distribution describes the uncertainties of basic events, the uncertainty of the top event in a fault tree is approximated with the sum of lognormal random variables after minimal cutsets are obtained, and rare-event approximation is applied. As handling complicated analytic expressions for the sum of lognormal random variables is challenging, several approximation methods, especially Monte Carlo simulation, are widely used in practice for uncertainty analysis. In this study, a theoretical approach for analyzing the sum of lognormal random variables using an efficient numerical integration method is proposed for uncertainty analysis in probability safety assessments. The change of variables from correlated random variables with a complicated region of integration to independent random variables with a unit hypercube region of integration is applied to obtain an efficient numerical integration. The theoretical advantages of the proposed method over other approximation methods are shown through a benchmark problem. The proposed method provides an accurate and efficient approach to calculate the uncertainty of the top event in probabilistic safety assessment when the uncertainties of basic events are described with lognormal random variables.

Thickness stretching and nonlinear hygro-thermo-mechanical loading effects on bending behavior of FG beams

  • Faicel, Khadraoui;Abderahmane, Menasria;Belgacem, Mamen;Abdelhakim, Bouhadra;Fouad, Bourada;Soumia, Benguediab;Kouider Halim, Benrahou;Mohamed, Benguediab;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.783-798
    • /
    • 2022
  • This study attempts to investigate the impact of thickness stretching and nonlinear hygro-thermo-mechanical loading on the bending behavior of FG beams. Young's modulus, thermal expansion, and moisture concentration coefficients vary gradually and continuously according to a power-law distribution in terms of the volume fractions of the constituent materials. In addition, the interaction between the thermal, mechanical, and moisture loads is involved in the governing equilibrium equations. Using the present developed analytical model and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are compared with those obtained by other 3D theories. Furthermore, the present analytical model is appropriate for investigating the static bending of FG beams exposed to intense hygro-thermo-mechanical loading used for special technical applications in aerospace, automobile, and civil engineering constructions.

Adaptive Fast Calibration Method for Active Phased Array Antennas using PPO Algorithm (PPO 알고리즘을 이용한 능동위상배열안테나 적응형 고속 보정 방법)

  • Sunge Lee;Kisik Byun;Hong-Jib, Yoon
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.636-643
    • /
    • 2023
  • In this paper, a high-speed calibration method for phased array antennas in the far-field is presented A max calibration, which is a simplification of the rotating-element electric-field vector (REV) method that calibrates each antenna element only through received power, and a method of grouping calibrations by sub-array unit rather than each antenna element were proposed. Using the Proximal Policy Optimization (PPO) algorithm, we found a partitioning optimized for the distribution of phased array antennas and calibrated it on a subarray basis. An adaptive max calibration method that allows faster calibration than the conventional method was proposed and verified through simulation. Not only is the gain of the phased array antenna higher while calibration is being made to the target, but the beam pattern is closer to the ideal beam pattern than the conventional method.