• Title/Summary/Keyword: Power Distribution Systems

Search Result 1,310, Processing Time 0.023 seconds

Reliability-Centered Maintenance of Generating Unit Using Stochastic FMECA (확률론적 FMECA를 이용한 발전설비의 신뢰도 기반 유지보수계획 수립)

  • Joo, Jae-Myung;Kim, Dong-Min;Byeon, Yoong-Tae;Kim, Hyung-Chul;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.58-65
    • /
    • 2008
  • Reliability-Centered Maintenance plan for maintenance schedule of generating unit is being assessed in this paper. Maintenance schedule is a key index that can be used to determine stability and cost. In this paper, stochastic FMECA is described for the life assessment by using probability distribution, and combustion-turbine generations in Korean power systems have been assessed for maintenance schedule. Such an assessment can be a useful guide for maintenance plans in restructured power industry.

A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application (건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

A Stable Black-Start Strategy for a Stand-Alone DC Micro-Grid

  • Cha, Jae-Hun;Han, Yoon-Tak;Park, Kyung-Won;Oh, Jin-Hong;Choi, Tae-Seong;Ko, Jae-Hun;MAHIRANE, Philemon;An, Jae-Yun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.30-37
    • /
    • 2018
  • Unlike an AC system, a DC system does not cause problems with synchronization, stability, reactive power, system losses, and cost. However, more research is still required for the application of DC Systems. This paper proposes a stable black-start strategy for a stand-alone DC micro-grid, which consists of an energy storage system, photovoltaic generator, wind-turbine generator, diesel generator, and DC loads. The proposed method is very important for avoiding inrush current and transient overvoltage in the power system equipment during restoration after a blackout. PSCAD/EMTDC software was used to simulate, analyze, and verify the method, which was found to be stable and applicable for a stand-alone DC micro-grid.

Optimization for Xenon Oscillation in Load Following Operation of PWR (가압경수형 원자로 부하추종 운전시 제논진동 최적화)

  • 김건중;오성헌;박인용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.861-869
    • /
    • 1989
  • The optimization problems, based on Pontryagin's Maximum Principle, for minimizing (damping) Xenon spatial oscillations in Load Following operations of Pressurized Water Reactor (PWR) is presented. The optimization model is formulated as an optimal tracking problem with quadratic objective functional. The oen-group diffusion equations and Xe-I dynamic equations are defined as equality constraints. By applying the maximum principle, the original problem is decomposed into a single time problem with no constraints. The resultant subproblems are optimized by using the conjugate Gradient Method. The computational results show that the Xenon spatial oscillation is minimized, and the reactor follows the load demand of the electrical power systems while maintaining the desired power distribution.

Development of Contact System in 460[V]/225[A]/50[kA] Molded Case Circuit Breaker (460[V]/225[A]/50[kA] 한류형 배선용 차단기 소호부 개발)

  • 최영길;구태근;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.137-144
    • /
    • 2002
  • Low voltage circuit breakers which interrupt rapidly and raise the reliability of power supply are widely used in power distribution systems. In the paper, it has been investigated how much interrupting capability is improved by correcting the shape of the contact system in molded case circuit breaker(below MCCB), especially arc runner. Prior to the interrupting testing, it is necessary for the optimum design to analyze electromagnetic forces on the contact system generated by current and flux density. This paper presents both our computational analysis and test results on contact system in MCCB.

Analysis and Design of Micro Solenoid (마이크로 솔레노이드의 해석 및 설계)

  • Jeon, Y.S.;Bae, S.K.;Kim, D.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.14-20
    • /
    • 2006
  • Recently, the on-off solenoid valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for on-off solenoid valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate on-off solenoid valve using the analogy of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, flow field characteristics was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D simulation using distribution curve of the force by working the front poppet.

  • PDF

Microgrid energy scheduling with demand response

  • Azimian, Mahdi;Amir, Vahid;Haddadipour, Shapour
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.85-100
    • /
    • 2020
  • Distributed energy resources (DERs) are essential for coping with growing multiple energy demands. A microgrid (MG) is a small-scale version of the power system which makes possible the integration of DERs as well as achieving maximum demand-side management utilization. Hence, this study focuses on the analysis of optimal power dispatch considering economic aspects in a multi-carrier microgrid (MCMG) with price-responsive loads. This paper proposes a novel time-based demand-side management in order to reshape the load curve, as well as preventing the excessive use of energy in peak hours. In conventional studies, energy consumption is optimized from the perspective of each infrastructure user without considering the interactions. Here, the interaction of energy system infrastructures is considered in the presence of energy storage systems (ESSs), small-scale energy resources (SSERs), and responsive loads. Simulations are performed using GAMS (General Algebraic modeling system) to model MCMG, which are connected to the electricity, natural gas, and district heat networks for supplying multiple energy demands. Results show that the simultaneous operation of various energy carriers, as well as utilization of price-responsive loads, lead to better MCMG performance and decrease operating costs for smart distribution grids. This model is examined on a typical MCMG, and the effectiveness of the proposed model is proven.

Optimization Design for Dynamic Characters of Electromagnetic Apparatus Based on Niche Sorting Multi-objective Particle Swarm Algorithm

  • Xu, Le;You, Jiaxin;Yu, Haidan;Liang, Huimin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.660-665
    • /
    • 2016
  • The electromagnetic apparatus plays an important role in high power electrical systems. It is of great importance to provide an effective approach for the optimization of the high power electromagnetic apparatus. However, premature convergence and few Pareto solution set of the optimization for electromagnetic apparatus always happen. This paper proposed a modified multi-objective particle swarm optimization algorithm based on the niche sorting strategy. Applying to the modified algorithm, this paper guarantee the better Pareto optimal front with an enhanced distribution. Aiming at shortcomings in the closing bounce and slow breaking velocity of electromagnetic apparatus, the multi-objective optimization model was established on the basis of the traditional optimization. Besides, by means of the improved multi-objective particle swarm optimization algorithm, this paper processed the model and obtained a series of optimized parameters (decision variables). Compared with other different classical algorithms, the modified algorithm has a satisfactory performance in the multi-objective optimization problems in the electromagnetic apparatus.

On the Calculation of Energy Requirement for Freight Train Reefer Container and Methods of Supplying the Power

  • Kim, Joouk;Hwang, Sunwoo;Lee, Jae-Bum;Kim, Youngmin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.79-88
    • /
    • 2022
  • Recently, securing stable supply of fresh food is deemed as one of the important tasks. Accordingly, now the presence of cold chain along with the needs of a comfortable and healthy life is growing as the online market expands and the contactless industry grows, however, cold chain is being studied only in the aspect of ground and sea transportation. And, due to global warming and strengthening global environmental regulations, we believe that it is necessary to convert the existing road-centered logistics system into a railway-centered logistics system, a low-carbon transportation means. Therefore, in this paper we calculated the maximum energy required by the reefer container as a basic research necessary for constructing the low temperature distribution and cold chain based on the reefer container railway, and conducted a study on methods of supplying the reefer container power utilizing 1. tramline, 2. battery, 3. generator. The results of this paper can be utilized as a foundational study for building a cold chain based on a reefer container dedicated to freight trains in the future.