• Title/Summary/Keyword: Power Distribution Systems

Search Result 1,303, Processing Time 0.034 seconds

The Service Restoration Algorithm of The New Distribution Automation System (신 배전자동화시스템의 배전선로 고장복구 알고리즘)

  • Cho, Nam-Hun;Ha, Bok-Nam;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.276-278
    • /
    • 1998
  • This paper introduce an algorithm for service restoration in electric power distribution systems. Power utility performs service restoration in order to restore out-of-service areas at fault. Developing effective service restoration program is a cost-effective approach to improve service reliability and to enhance customer satisfaction. The main objective in service restoration program is to restore as much load as possible by transferring de-energized loads via network reconfigurations to other supporting distribution feeders without violating operating and engineering constrains.

  • PDF

A Techno-Economic Feasibility Analysis on LVDC Distribution System for Rural Electrification in South Korea

  • Afamefuna, David;Chung, Il-Yop;Hur, Don;Kim, Ju-Yong;Cho, Jintae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1501-1510
    • /
    • 2014
  • Low voltage direct current (LVDC) distribution system is a suitable techno-economic candidate which can create an innovative solution for distribution network development with respect to rural electrification. This research focuses on the use of LVDC distribution system to replace some of KEPCO's existing traditional medium voltage alternating current (MVAC) distribution network for rural electrification in South Korea. Considering the technical and economic risks and benefits involved in such project, a comparative techno-economic analysis on the LVDC and the MVAC distribution networks is conducted using economic assessment method such as the net present value (NPV) on a discounted cash flow (DCF) basis as well as the sensitivity analysis technique. Each would play a role in an economic performance indicator and a measure of uncertainty and risk involved in the project. In this work, a simulation model and a computational tool are concurrently developed and employed to aid the techno-economic analysis, evaluation, and estimation of the various systems efficiency and/or performance.

A Reliability Analysis in LVDC Distribution System Considering Power Quality (전력품질을 고려한 LVDC 배전계통의 신뢰도 분석)

  • Noh, Chul-Ho;Kim, Chung-Mo;Kim, Doo-Ung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Han, Jun;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.54-61
    • /
    • 2015
  • Recently, DC-based power system is being paid attention as the solution for energy efficiency. As the example, HVDC (High Voltage DC) transmission system is utilized in the real power system. On the other hand, researches on LVDC (Low Voltage DC) distribution system, which are including digital loads, are not enough. In this paper, reliability in LVDC distribution system is analyzed according to the specific characteristics such as the arrangement of DC/DC converters and the number of poles. Furthermore, power quality is also taken account of since LVDC distribution system includes multiple sensitive loads and electric power converters. In order to achieve this, LVDC distribution systems are modeled using ElectroMagnetic Transient Program (EMTP) and both the minimal cut-set method and Customer Interruption Cost (CIC) are used in the reliability analysis.

A Study on the Priority Decision for Interconnection of PV System on Power Distribution System considering Customer Interruption Costs (정전비용 고려한 PV시스템의 배전계통 연계 우선순위 결정에 관한 연구)

  • Son, Chang-Nam;Han, Woon-Dong;Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.163-168
    • /
    • 2014
  • In this paper, when photovoltaic systems are connected to distribution system, most effective capacity and location of PV system are studied considering customer interruption costs of power distribution system. The reliability model of PV system considering the duration of sunshine, the model of time-varying load and Roy Billinton test system (bus2 model) are used. To simulate the effects of PV system, various cases are selected; (1) base case which is no connection of PV system to power distribution system when faults are occurred, (2) 3MW case which is 3[MW] connection of PV system (3) 4[MW] case, and (4) 20[MW] case which is 20[MW] connection of PV system to the bus of power distribution system. The capacity limit of connected PV system is settled to 14[MW] for all cases except case 4. The reliability and customer interruption costs for residential, general, industrial, and educational customer is evaluated.

Introduction of KEPCO's distribution class SFCL fabricated for verification test (실증시험용 배전급 초전도 한류기의 특성 평가 및 운전 시험)

  • Yim, Seong-Woo;Park, Chung-Ryul;Yu, Seung-Duck;Kim, Hye-Rim;Hyun, Ok-Bae;Park, Kwon-Bae;Sim, Jung-Wook;Lee, Kyoung-Ho;Oh, Ill-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.294_295
    • /
    • 2009
  • Superconducting fault current limiter (SFCL) is an power device of a novel concept. While SFCLs generate no ohmic loss during the operation carrying normal currents, they can limit fault currents very fast making large impedance by their quench characteristics. In 2006, KEPCO has developed a distribution class hybrid type SFCL by a collaborative research project with LS industrial systems. The SFCL has merits in practical and economical points of view. In the SFCL, the superconductor just plays a role of a fault detector and the current limiting is completed by the other current limiting element made of normal metals throu호 the line commutation. As a result, the required amounts of superconductors can be reduced considerably. Consequently, the hybrid SFCL can be fabricated with small size and cost, maintaining perfect current limiting performance. Currently, KEPCO is carrying out a research project at Gochang power test center for the purpose of the verification test of the 22.9 kV/ 630 A class SFCL for the practical application in real grid. Through the project, a long term operational test and fault current test will be done. In this paper, the back ground of development and installation of the SFCL will be explained and the operation plan of the SFCL for the verification test is also introduced.

  • PDF

A Study on PV Power Generation System Adding the Function of Shunt Active Filler Using DSP (DSP를 이용한 엑티브 필터 기능 추가형 태양광발전시스템의 운전특성에 관한 연구)

  • Seo, Hyo-Ryong;Park, Young-Gil;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1169-1170
    • /
    • 2006
  • Grid connected PV(Photovoltic) generation systems are becoming and actual and general. The power output of PV system is directly affected by the weather conditions. And when AC power supply is needed, power conversion by an inverter and a MPPT control are necessary. The PV power generation system can be treated to a harmonics source for the power distribution system. So, the PV system combined the function of active filter system can be useful applied in power distribution system. AF(Active Filters) intended for harmonic solutions are expending their functions from harmonic compensation of nonlinear loads into harmonic isolation between utilities and consumer. With the test analysis of the proposed control strategy of PV-AF system, the outcome of the test shows the stability and effectiveness of the proposed PV-AF system. The various capability of AF has been proved in previous research and usage. In this paper, authors present a DSP controlled PV-AF system for power conditioning in three-phase industrial or commercial power systems and verify it through experimental results.

  • PDF

An Adaptive Reclosing Algorithm Considering Distributed Generation

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.651-659
    • /
    • 2008
  • Autoreclosing techniques have been used in power systems to maintain system stability and continuity of supply. Environmental and economical issues have driven significant increases in the development of distributed generation (DG). DG connected to distribution systems, however, may impose negative influences with respect to power quality, protection, and stability, because DG can cause some challenges to protection, especially to reclosing. For this reason, in order to improve the reliability and safety of the distribution system, the rules and guidelines suggest that the DG system needs to be rapidly disconnected from the system before reclosing. We present, in this paper, an adaptive reclosing algorithm considering the DG. The algorithm consists of an angle oscillation's judgment, the emergency extended equal-area criterion (EEEAC), the calculation of an optimal reclosing time, and a reconnection algorithm. Our simulation results for three different DG technologies with Electromagnetic Transient Program (EMTP) indicate that we can maintain transient stability while the DG is protected against disturbances.

Design of the digital TRS network for for the Distribution Automation System (디지털 TRS를 이용한 배전자동화통신망 구축 방안)

  • Kim, Tae-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.420_421
    • /
    • 2009
  • The digital TRS(Trunked Radio System) is an excellent alternative for the transmission medium for the DAS(Distribution Automation System). KEPCO(Korea Electric Power Corporation) made the power IT network with digital TRS system. The main function of the radio network is transmitting and receiving information for the DAS. KEPCO's digital TRS is based on TETRA standard. The digital TRS supports data communication for the electric power control and monitoring systems in various ways.

  • PDF

A Study on Determination of Optimal Reclosing Guideline on Distribution Lines (배전선로 재폐로 최적 기준 산정에 관한 연구)

  • Cho, Jae-Hun;Lee, Sun-Jung;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.417-422
    • /
    • 2022
  • It is always desirable that the continuation of power flow through the lines should not be interrupted for a long time. The optimized guideline of reclosers on distribution lines is known to improve the reliability of power systems, the protection functions on distribution systems heavily rely on the number and placement of such reclosers. This study reviewed the effect of using protection settings methodology with the number of reclosing operations to reduce the damage sustained during faults on distribution networks. The aim of the study is to determine the number of reclosing operations and fault current conditions based on simulation data of PSCAD/EMTDC for standard distribution networks. It is found that the determination of the number of operations on reclosers, which are the protection function of feeders, helped to optimize the operation and reliability of distribution networks.

A Study on Momentary Voltage Variations and Fault Analysis in the Power Distribution System with Congeration Facilities (COGN). (열병합발전설비가 연계된 배전계통 순시전압변동 및 사고해석에 관한 연구)

  • Jung, Seong-Kyo;Choi, Joon-Ho;Kim, Dae-Won;Kim, Jae-Chul;Son, Hag-Sig;Kim, Yun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1192-1194
    • /
    • 1999
  • Recently, there has been growing interest in utilizing cogeneration(COGN) system which has high energy efficiency due to the lacking of energy resource, but insertion of cogeneration system into existing power distribution system can cause several problems such as voltage variations, reenergizing of feeder isolated by fault, increasing fault current because of reverse power of COGN. Also these problems increase the complexity of control, protection, and maintenance of power distribution systems. Hence, some problems according to COGN interconnection operation to power distribution system must be taken into account so that operation and security of power distribution system is not disturbed. This paper deals with momentary voltage variations and fault analysis caused by interconnection operation of COGN.

  • PDF