• Title/Summary/Keyword: Power Distance

Search Result 2,402, Processing Time 0.032 seconds

Analysis of Safety Distance and Maximum Permissible Power of Resonant Wireless Power Transfer Systems with Regard to Magnetic Field Exposure

  • Park, Young-Min;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.450-459
    • /
    • 2015
  • In this paper, the safety distances and maximum permissible power (MPP) of resonant wireless power transfer systems are defined and derived with regard to human exposure to electromagnetic field (EMF). The definition is based on the calculated induced current density and electric field in the standard human model located between the transmitting and receiving coil. In order to avoid the adverse health effects such as stimulation of nerve tissues, the induced current and electric field must not exceed the basic restriction values specified in EMF safety guidelines. The different combinations of diameters of the coils and the distance between the two coils are investigated and their effects are analyzed. Two versions of EMF safety guidelines (ICNIRP 1998 and ICNIRP 2010) are used as bases for safety distance calculation and the difference between the two guidelines are discussed.

Development of Protection Method for Power System interconnected with Distributed Generation using Distance Relay

  • Kim, Ji-Soo;Cho, Gyu-Jung;Song, Jin-Sol;Shin, Jae-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2196-2202
    • /
    • 2018
  • The conventional power system allowed only downstream power flow. Therefore, even if a fault occurs, only the forward current flow is considered. However, with the interest in distributed generation (DG), DGs such as Photovoltaic (PV), Wind Turbine (WT) are being connected to a power system. DGs have many advantages, but they also have disadvantage such as generation of reverse flow. Reverse flow can severely disrupt existing protection systems that only consider downstream power flow. The major problems that may arise from reverse power flow are blinding protection and sympathetic tripping. In order to solve such problems, the methods of installing a directional relay or a fault current limiter is proposed. However, this method is inconceivable because of the economics shortage. Therefore, in this paper, a distance relay installed in existing power system is used to solve the protection problem. Modeling of distance relay has been carried out using ElectroMagnetic Transients Program (EMTP), and it has been verified through simulations that the above problems can be solved by a distance relay.

Analysis on Operational Characteristics of Distance Relay due to Application of Superconducting Fault Current Limiter in a Simulated Power Transmission System (모의 송전계통에 초전도한류기의 적용에 따른 거리계전기의 동작특성 연구)

  • Noh, Shin-Eui;Kim, Jin-Seok;Kim, Yi-Gwan;Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.40-46
    • /
    • 2014
  • The development of the superconducting fault current limiter (SFCL) to apply into a power transmission system where makes larger fault current compared to the power distribution system has been performed. Among various SFCLs, the trigger-type SFCL is suitable for application into the power transmission system due to the effective reduction on power burden of the high temperature superconducting element (HTSC) for the larger fault current. To protect the power transmission line in the power grid, the distance relay, which decides to interrupt fault section where can be calculated by the measured voltage and current from sound grid, is one of important protective devices in the power transmission system. However, the operation of the distance relay from the impedance of the fault point on the transmission line is affected by the impedance of the trigger-type SFCL. Therefore, the analysis on the operational characteristics of distance relay considering the application of the SFCL is required. In this paper, the effect on the operation zones of the distance relay by the impedance of the SFCL in a power transmission system was analyzed through the PSCAD/EMTDC simulation.

Analysis of Fault Point's Distant Effect in Power Distribution System with Superconducting Fault Current Limiter (배전계통의 고장 전류 제한을 위한 초전도 한류기 적용시 고장발생 위치에 따른 영향 분석)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.44-49
    • /
    • 2011
  • Due to increase of fault current, various superconducting fault current limiter (SFCL) are researched. We studied a power distribution system with SFCL. Along the way, we knew characteristics of fault current according to a distance from substation to fault point. Fault current is reduced by distance`s increase from substation. Also, SFCL.s effects are decreased by distance too. Therefore, we analyzed the fault current by a distance from substation to fault point when a SFCL was applied into a power distribution system. We simulated using a PSCAD/EMTDC.

Electrical Characteristics of PV Module According to Optical Characteristics of Back-sheet (PV모듈에서 후면Sheet의 광학적 특성에 따른 전기적 출력 특성)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.42-47
    • /
    • 2008
  • In this paper, we analyze the electrical characteristics of PV depending on distance among solar cells before and after lamination process. From the result, the PV module's maximum power increases about 3.37% when solar cells's distance is 10mm. And the maximum power increases up to 8.42% when solar cells's maximum distance is 50mm. It is assumed that PV module's surface temperature decreases because of increasing distance between solar cells that would give high power generation. Also, short distance between solar cell and frame result in contamination on glass. When considering reduced maximum power caused by contaminant, from that. we can fabricated PV module of lower cost with high performance.

  • PDF

Measuring Nuclear Power Plant Negative Externalities through the Life Satisfaction Approach: The Case of Ulsan City

  • LEE, KYE WOO;YOO, SE JONG
    • KDI Journal of Economic Policy
    • /
    • v.40 no.1
    • /
    • pp.67-83
    • /
    • 2018
  • We have hypothesized that nuclear risk is significantly inversely related to the distance from residences to nuclear power plants and that the level of life satisfaction of residents therefore increases with the distance. We empirically explore the relationship between Ulsan citizens' life satisfaction levels and the distance between their residences and the Kori and Wolsong nuclear power plants (NPP) based on the life satisfaction approach (LSA). The dataset we used covers only Ulsan citizens from the biennial Ulsan Statistics on Citizen's Living Condition and Consciousness of 2014 and 2016. Controlling for micro-variables such as education, work satisfaction, gender, marital status, and expenditures, we found a statistically significant relationship between life satisfaction and the distance between the residences and the nuclear power plants. Nuclear negative externalities including (i) health and environmental impact, (ii) radioactive waste disposal, and (iii) the effect of severe accidents can be quantified in terms of LS units and monetary units. We were able to calculate the monetary value of NPP externalities at $277 per kilometer of distance for Kori and $280 per kilometer of distance for Wolsong at constant 2015 prices. These estimates are quite different from the traditional estimates made with the contingent valuation method, whereas they are similar to the findings of LSA studies abroad. Hence, the need to adopt the LSA in South Korea and policy implications are demonstrated.

The Impact of Cross-Cultural Differences on Human Resource Management in Korean-Invested Enterprises in China

  • Li, Hao;Li, Yu
    • Journal of Korea Trade
    • /
    • v.25 no.2
    • /
    • pp.46-57
    • /
    • 2021
  • Purpose - In terms of human resource management, many Korean enterprises in China have experienced problems such as frequent resignations of Chinese employees and labor disputes. This can be mainly attributed to the fact that Chinese employees are not consistent with Korean vertical management methods, which is closely related to the national culture theory proposed by Hofstede, specifically the dimension of power distance and long- versus short-term orientation (LTO). Therefore, this research aims to investigate cultural differences between Korea and China from these two dimensions, and the impact on the human resource management of Korean-invested enterprises in China. Design/methodology - This research first utilizes the latest data (Wave 7) of the World Values Survey (WVS) to verify the difference in power distance and long- versus short-term orientation between Korean and Chinese cultures using responses from Korea and China, and then uses case analysis to analyze the impact of this cultural difference on the human resource management of Korean enterprises in China. Findings - Our main findings can be summarized as follows. Korea and China have significant differences in power distance and long- versus short-term orientation. In terms of power distance, Korean respondents show higher power distance compared to Chinese respondents. In the dimension of long- versus short-term orientation, it was found that Chinese respondents showed a shorter-term orientation, whereas Korean respondents showed a longer-term orientation. Originality/value - Previous studies put focus on the power distance and individualism-collectivism dimensions to explain cultural differences between Korea and China, and generated contradictory results. This research further confirms the cultural differences between Korea and China from the dimensions of power distance and long-versus short-term orientation using secondary data. The comparative studies from this perspective have long been underexplored and lack empirical confirmation.

Fuzzy Inference System Based Distance Relay Algorithm Development for Protecting an Underground Power Cable Systems (퍼지추론시스템 기반 지중송전계통 보호용 거리계전 알고리즘 개발)

  • Jung, Chae-Kyun;Oh, Sung-Kwun;Park, Keon-Jun;Lee, Jae-Kyu;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.172-178
    • /
    • 2008
  • If the fault occurs on the underground power cable systems, the fault current on the sheath has an influence on all sections of cable because it's returned through earth at the directly grounded point and operation point of SVL(Sheath Voltage Limiter) on each insulated joint box. Therefore, the earth resistance and the operation of SVL have an effect on the zero-sequence current, and then the impedance between relaying point and fault point is increased. That causes the overreach of distance relay. For these reasons, the distance relay algorithm for protecting an underground power cable systems hasn't been developed till now. In this paper, new distance relay algorithm is developed for protecting a underground power cable system using fuzzy inference system which is the one of ACI(Advanced Computational Intelligence) techniques. This algorithm is verified by EMTP simulation of real power cable system, and proves to effectively advance the errors

Limited Feedback Designs for Two-Way Relaying Systems with Physical Network Coding

  • Kim, Young-Tae;Lee, Kwangwon;Jeon, Youngil;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.463-472
    • /
    • 2015
  • This paper considers a limited feedback system for two-way wireless relaying channels with physical network coding (PNC). For full feedback systems, the optimal structure with the PNC has already been studied where a modulo operation is employed. In this case, phase and power of two end node channels are adjusted to maximize the minimum distance. Based on this result, we design new quantization methods for the phase and the power in the limited feedback system. By investigating the minimum distance of the received constellation, we present a code-book design to maximize the worst minimum distance. Especially, for quantization of the power for 16-QAM, a new power quantization scheme is proposed to maximize the performance. Also, utilizing the characteristics of the minimum distance observed in our codebook design, we present a power allocation method which does not require any feedback information. Simulation results confirm that our proposed scheme outperforms conventional systems with reduced complexity.

Influence of the Large Scaled Wind Farm Interconnected with 154 kV Power Networks on the Distance Relay (154 kV 계통 연계 대규모 풍력단지가 송전선 거리계전기에 미치는 영향)

  • Jang, Sung-Il;Kim, Kwang-Ho;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.334-336
    • /
    • 2003
  • This paper describes the influences of the large scaled wind farm interconnected with 154 kV power networks on the operational characteristics of distance relay applied in the transmission line. The wind farm composed of wind turbine generators are one of the great energy sources: they can supply the power into an interconnected network not only the normal conditions, but also the fault conditions of power network. Therefore, the distance relay applied in the transmission tine may mal-operate due to the contribution of wind farm. This paper presents the operational characteristics of distance relay for the fault occurred in the transmission line interconnected with wind farm. Simulation results show that it is difficult to recognize the fault location due to the power output of wind farm.

  • PDF