• Title/Summary/Keyword: Power Diagram

Search Result 374, Processing Time 0.033 seconds

Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor (물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

Analysis on the Qualitative Performance of a Power Split/Circulation Transmission (동력분기/순환구조 동력전달계의 정성적 성능 해석)

  • Lim, W.S.;Lee, D.J.;Lee, J.M.;Park, Y.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.212-223
    • /
    • 1995
  • To improve the efficiency of a power transmission system with slip elements, power split/circulation system is applied. The performance of a power split/circulation system varies widely by the change of the followings; the layout of system, the type and gear ratio of planetary gear, the performance of slip element, etc. Therefore, when one designs such a power transmission system or when one determines the economic/power mode of system, a certain performance prediction method is needed. In this study, the internal power flow pattern of a power split/circulation system is theoretically analyzed on several transmission systems. And an effective performance prediction method(so called performance locus diagram) is presented. By this method, the effects of design factors can be easily understood and the qualitative performances of system can be clearly evaluated.

  • PDF

A Novel Controller for Electric Springs Based on Bode Diagram Optimization

  • Wang, Qingsong;Cheng, Ming;Jiang, Yunlei
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1396-1406
    • /
    • 2016
  • A novel controller design is presented for the recently proposed electric springs (ESs). The dynamic modeling is analyzed first, and the initial Bode diagram is derived from the s-domain transfer function in the open loop. The design objective is set according to the characteristics of a minimum phase system. Step-by-step optimizations of the Bode diagram are provided to illustrate the proposed controller, the design of which is different from the classical multistage leading/lagging design. The final controller is the accumulation of the transfer function at each step. With the controller and the recently proposed δ control, the critical load voltage can be regulated to follow the desired waveform precisely while the fluctuations and distortions of the input voltage are passed to the non-critical loads. Frequency responses at any point can be modified in the Bode diagram. The results of the modeling and controller design are validated via simulations. Hardware and software designs are provided. A digital phase locked loop is realized with the platform of a digital signal processor. The effectiveness of the proposed control is also validated by experimental results.

An Auto-drawing Algorithm for the Single Line Diagram of Distribution Systems (배전선로 회선별단선도 자동생성 알고리즘)

  • Son, Ju-Hwan;Lim, Seong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.854-859
    • /
    • 2010
  • Distribution Automation System(DAS) is designed to improve operational efficiency by acquisition and control of remote data using its components such as central computation units, communication network and feeder remote terminal units. A conventional human machine interface of the DAS adopts a schematic diagram which is made by drawing power equipments on the geographic information system map. The single line diagram is more useful than the schematic diagram for the main tasks of distribution system operation such as protective relay coordination, service restoration and loss minimization. Since the configuration of the distribution line is changed according to the relocation of the open tie switches, the auto-drawing algorithm based on the connection between the sections and the switches is an essential technique. This paper proposes a new auto-drawing algorithm for a single line diagram of distribution systems based on tertiary tree and collision avoidance method. The feasibility of the proposed algorithm has been testified for various cases using practical distribution system with 12 feeders.

A Study on Power-Flow Analysis of The Lepelletier 6-Speed Automatic Transmission (6 속 자동변속기용 레펠레티아 유성 치차의 동력 해석에 관한 연구)

  • 박진홍;심재경;강봉수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.652-655
    • /
    • 2004
  • In gear-train design, power-flow analysis is a very important process. The method for power-flow analysis apply the power balance equation and torque balance equation to each fundamental circuit. Then, the equation are solved simultaneously to determine the power-flow in planetary gear train. In this paper we perform power-flow analysis of a 6-speed automatic transmission. With this results are used to represent block diagram. In addition, the efficiencies of epicyclic inversion of the 6-speed automatic transmission is obtained.

  • PDF

INSTANTANEOUS COMPENSATING POWER FLOW DIAGRAM OF ACTIVE POWER FILTER

  • Jung, Y.G.;Ha, F.rashima;Lim, Y.C.;Yang, S.H.;Chang, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.883-887
    • /
    • 1998
  • The goal of this paper is to present an instantaneous compensating power flow of active power filter(APF) by graphical method that could be practicable to compensate the power in both case of behaving in an instantaneous rectifying mode and an instantaneous inverting mode. To ensure the validity of the proposed method, computer simulation is achieved. Proposed method can be present more exquisite and physically meaningful power flow than conventional method in the instantaneous compensating power flow diagram of APF.

  • PDF

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.

P-Q Circle Diagram Based Parameter Measurement for Permanent Magnet Synchronous Motor Including Iron Loss

  • Urasaki, Naomitsu;Senjyu, Tomonobu;Uezato, Katsumi
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • This paper presents parameter measurement for permanent magnet synchronous motors based on the P-Q circle diagram. Three electrical parameters of permanent magnet synchronous motors, i.e., the equivalent iron loss resistance, armature inductance, and electrical motive force (emf) coefficient are simultaneously measured. The advantages of this method are that it can be implemented under constant excitation and it dispenses with the generating test for the emf coefficient. The proposed method is applied to a 160w permanent magnet synchronous motor, and then the measurement results are analyzed.

Development of Load Flow simulator for the Educational Program using GUI (GUI기법을 이용한 Load Flow 교육용 시뮬레이터 개발)

  • Moon, Jeong-Hwan;Kim, Young-Yong;Jang, Se-Hwan;Ryu, Seung-Oh;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.72-74
    • /
    • 2007
  • This paper presents a Windows graphic developed by the authors for the education and training of power system. Object-oriented programming is a major trend in computer software because it increases flexibility of large-scale software systems. An efficient platform for power system simulation applications has been proposed. This paper presents an intuitive Windows-based program for the power system analysis. The advantages of the object-oriented approach are demonstrated with an implementation of the graphical program. It provides a graphical interface for designing the one-line diagram of the bus and analyzing the output of the simulations. A graphical editor to visually edit the power system, diagram, results processing and exporting and graphic presentations.

  • PDF

Analysis on How to Locate the Maximum Line Voltage to Hull in Steady State on the Vector Diagram Onboard Vessels

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.966-973
    • /
    • 2011
  • Power distribution onboard vessel is typically configured as ungrounded system due to the ability to continuously supply electric power even when an earth fault occurs. The impedance connections between 3 phase power lines and hull cause the line-to-hull voltages to become unstable and increased in case the impedances are unbalanced, bringing the situation susceptible to electric shock and deterioration of insulation material. Also the line-to-hull voltage can reach to a certain maximum value in the steady state depending on the distributed capacitances and grounding resistances between lines and hull. This study suggests how to find and calculate the maximum line-to-hull voltage in view of magnitude and phase angle based on the vector diagram.