• 제목/요약/키워드: Power Delivery Networks

검색결과 67건 처리시간 0.021초

스마트 배전시스템의 최적 구성 방안에 관한 연구 (A Study on the Optimal Design for Smart Distribution System)

  • 지성호;손준호;송석환;노대석
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2009년도 추계학술발표논문집
    • /
    • pp.834-836
    • /
    • 2009
  • The authors have been discussed the optimal voltage regulation method and on-line real time method using artificial neural networks in the distribution system interconnected with Distributed Generation and Storage(DSG) systems. However, these methods have difficulty in dealing with the random load variations and operation characteristics of a number of DSG systems. To overcome these problems, this paper shows the basic concepts of smart grid system which is considered as one of the power delivery system in the near future and presents an evaluation method on the impacts of customer voltages by the operation of smart grid system. The smart grid system can change the system configuration in a flexible manner by using the static switches and offer the different power qualities in power services through the power quality control centers.

  • PDF

모바일 Ad-hoc 무선 센서 네트워크에서 위치도움 협력 전송 방법 (A Location-Aided Cooperative Transmission Method in Mobile Ad-hoc Wireless Sensor Networks)

  • 손동환;이주상;안병구;공형윤
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.23-28
    • /
    • 2008
  • 본 논문에서는 모바일 ad-hoc 무선 센서 네트워크에서 전력절약과 안정된 경로의 lifetime을 효과으로 지원하기 위한 위치 기반 협력 도움 라우팅 프로토콜(LACARP : Location-Aided Cooperative-Aided Routing Protocol)을 제안한다. 제안된 라우팅 프로토콜의 기본 아이디어 및 특징은 다음과 같다. 첫째, 전력 절약 전송을 지원하기 위해서 위치기반 정보를 이용하여 경로 탐색 영역을 설정한다. 둘째, 전력 절약 및 효율성 있는 전송을 위해서 설정된 경로 탐색 영역 안에서 스몰 존 기반의 경로 탐색 방법이다. 셋째, 협력도움 전송 방법이다. 설정된 경로위로 데이터를 전송 할 때 전력절약 및 경로의 lifetime을 효과적으로 지원하기 위해서 경로가 설정되지 않은 이웃 노드들로부터 협력도움을 받는다. LACARP의 성능평가는 OPNET(Optimized Network Engineering Tool)을 사용하여 이루어졌으며 성능평가를 통하여 제안된 프로토콜은 경로의 데이터 전송효율과 전력절약 전송 효과적으로 향상 시킬 수 있음을 알 수 있다.

  • PDF

Security Model for Tree-based Routing in Wireless Sensor Networks: Structure and Evaluation

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권4호
    • /
    • pp.1223-1247
    • /
    • 2012
  • The need for securing Wireless Sensor Networks (WSNs) is essential especially in mission critical fields such as military and medical applications. Security techniques that are used to secure any network depend on the security requirements that should be achieved to protect the network from different types of attacks. Furthermore, the characteristics of wireless networks should be taken into consideration when applying security techniques to these networks. In this paper, energy efficient Security Model for Tree-based Routing protocols (SMTR) is proposed. In SMTR, different attacks that could face any tree-based routing protocol in WSNs are studied to design a security reference model that achieves authentication and data integrity using either Message Authentication Code (MAC) or Digital Signature (DS) techniques. The SMTR communication and processing costs are mathematically analyzed. Moreover, SMTR evaluation is performed by firstly, evaluating several MAC and DS techniques by applying them to tree-based routing protocol and assess their efficiency in terms of their power requirements. Secondly, the results of this assessment are utilized to evaluate SMTR phases in terms of energy saving, packet delivery success ratio and network life time.

Energy-Efficient Quorum-Based MAC Protocol for Wireless Sensor Networks

  • Annabel, L. Sherly Puspha;Murugan, K.
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.480-490
    • /
    • 2015
  • The reliability of sensor networks is generally dependent on the battery power of the sensor nodes that it employs; hence it is crucial for the sensor nodes to efficiently use their battery resources. This research paper presents a method to increase the reliability of sensor nodes by constructing a connected dominating tree (CDT), which is a subnetwork of wireless sensor networks. It detects the minimum number of dominatees, dominators, forwarder sensor nodes, and aggregates, as well as transmitting data to the sink. A new medium access control (MAC) protocol, called Homogenous Quorum-Based Medium Access Control (HQMAC), is also introduced, which is an adaptive, homogenous, asynchronous quorum-based MAC protocol. In this protocol, certain sensor nodes belonging to a network will be allowed to tune their wake-up and sleep intervals, based on their own traffic load. A new quorum system, named BiQuorum, is used by HQMAC to provide a low duty cycle, low network sensibility, and a high number of rendezvous points when compared with other quorum systems such as grid and dygrid. Both the theoretical results and the simulation results proved that the proposed HQMAC (when applied to a CDT) facilitates low transmission latency, high delivery ratio, and low energy consumption, thus extending the lifetime of the network it serves.

Small-IoT 환경에서 이기종 네트워크를 활용한 스마트 모바일 단말의 에너지 효율적 실시간 컴퓨팅 기법 (Energy-efficient Real-time Computing by Utilizing Heterogenous Wireless Interfaces of the Smart Mobile Device in Small-IoT Environments)

  • 임성화
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.108-112
    • /
    • 2021
  • For smart mobile devices, the wireless communication module is one of the hardware modules that consume the most energy. If we can build a multi-channel multi-interface environment using heterogeneous communication modules and operate them dynamically, data transmission performance can be highly improved by increasing the parallelism. Also, because these heterogeneous modules have different data rates, transmission ranges, and power consumption, we can save energy by exploiting a power efficient and low speed wireless interface module to transmit/receive sporadic small data. In this paper, we propose a power efficient data transmission method using heterogeneous communication networks. We also compared the performance of our proposed scheme to a conventional scheme, and proved that our proposed scheme can save energy while guaranteeing reasonable data delivery time.

TASL: A Traffic-Adapted Sleep/Listening MAC Protocol for Wireless Sensor Network

  • Yang, Yuan;Zhen, Fu;Lee, Tae-Seok;Park, Myong-Soon
    • Journal of Information Processing Systems
    • /
    • 제2권1호
    • /
    • pp.39-43
    • /
    • 2006
  • In this paper, we proposed TASL-MAC, a medium-access control (MAC) protocol for wireless sensor networks. In wireless sensor networks, sensor nodes are usually deployed in a special environment, are assigned with long-term work, and are supported by a limited battery. As such, reducing the energy consumption becomes the primary concern with regard to wireless sensor networks. At the same time, reducing the latency in multi-hop data transmission is also very important. In the existing research, sensor nodes are expected to be switched to the sleep mode in order to reduce energy consumption. However, the existing proposals tended to assign the sensors with a fixed Sleep/Listening schedule, which causes unnecessary idle listening problems and conspicuous transmission latency due to the diversity of the traffic-load in the network. TASL-MAC is designed to dynamically adjust the duty listening time based on traffic load. This protocol enables the node with a proper data transfer rate to satisfy the application's requirements. Meanwhile, it can lead to much greater power efficiency by prolonging the nodes' sleeping time when the traffic. We evaluate our implementation of TASL-MAC in NS-2. The evaluation result indicates that our proposal could explicitly reduce packet delivery latency, and that it could also significantly prolong the lifetime of the entire network when traffic is low.

계약망 프로토콜과 DEVS 모델링을 통한 센서네트워크 보안 모델의 설계 (Design of Sensor Network Security Model using Contract Net Protocol and DEVS Modeling)

  • 허수만;서희석
    • 디지털산업정보학회논문지
    • /
    • 제4권4호
    • /
    • pp.41-49
    • /
    • 2008
  • Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes. Such attacks by compromised sensors can cause not only false alarms but also the depletion of the finite amount of energy in a battery powered network. In order to reduce damage from these attacks, several security solutions have been proposed. Researchers have also proposed some techniques to increase the energy-efficiency of such security solutions. In this paper, we propose a CH(Cluster Header) selection algorithm to choose low power delivery method in sensor networks. The CNP(Contract Net Protocol), which is an approach to solve distribution problems, is applied to choose CHs for event sensing. As a result of employing CNP, the proposed method can prevent dropping of sensing reports with an insufficient number of message authentication codes during the forwarding process, and is efficient in terms of energy saving.

무선 센서 네트워크의 MAC 프로토콜에서 에너지 효율성과 공정성 향상을 위한 기법 연구 (An Energy Efficient and Fair MAC Protocol Using Preamble Counting for Wireless Sensor Networks)

  • 이동호;정광수
    • 한국정보과학회논문지:정보통신
    • /
    • 제35권2호
    • /
    • pp.149-157
    • /
    • 2008
  • 제한된 배터리를 갖는 노드로 구성되는 무선 센서 네트워크에서는 에너지 효율적인 MAC 프로토콜의 연구가 활발히 진행되고 있으며 낮은 듀티 사이클 동작이 에너지 소모를 줄이는 효과적인 방법으로 널리 사용되고 있다. 낮은 듀티 사이클을 사용하는 MAC 프로토콜에서 불필요한 에너지 소모 및 지연을 줄이고 전송률을 향상시키기 위해 Short Preamble 기법이 제안되었지만 송신 노드간의 경쟁을 충분히 고려하지 않아 불공정한 경쟁의 문제가 발생할 수 있다. 이 문제를 해결하기 위해 본 논문에서는 Short Preamble에 우선순위 정보를 추가하여 수신 노드에서 적절히 송신 노드를 선택할 수 있는 Preamble Counting기법을 제안하였다. Preamble Counting을 사용함으로써 송신 노드간의 에너지 소모 및 패킷 전송률의 균형을 이룰 수 있음을 실험을 통해 확인하였다.

The Method of Reducing the Delay Latency to Improve the Efficiency of Power Consumption in Wireless Sensor Networks

  • Ho, Jang;Son, Jeong-Bong
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 한국정보컨버전스학회 2008년도 International conference on information convergence
    • /
    • pp.199-204
    • /
    • 2008
  • Sensor nodes have various energy and computational constraints because of their inexpensive nature and ad-hoc method of deployment. Considerable research has been focused at overcoming these deficiencies through faster media accessing, more energy efficient routing, localization algorithms and system design. Our research attempts to provide a method of improvement MAC performance in these issues. We show that traditional carrier-sense multiple access(CSMA) protocols like IEEE 802.11 do not handle the first constraint adequately, and do not take advantage of the second property, leading to degraded latency and throughput as the network scales in size, We present more efficient method of a medium access for real-time wireless sensor networks. Proposed MAC protocol is a randomized CSMA protocol, but unlike previous legacy protocols, does not use a time-varying contention window from which a node randomly picks a transmission slot. To reduce the latency for the delivery of event reports, it carefully decides a fixed-size contention window, non-uniform probability distribution of transmitting in each slot within the window. We show that it can offer up to several times latency reduction compared to legacy of IEEE 802.11 as the size of the sensor network scales up to 256 nodes using widely used simulator ns-2. We, finally show that proposed MAC scheme comes close to meeting bounds on the best latency achievable by a decentralized CSMA-based MAC protocol for real-time wireless sensor networks which is sensitive to latency.

  • PDF

Simultaneous Information and Power Transfer for Multi-antenna Primary-Secondary Cooperation in Cognitive Radio Networks

  • Liu, Zhi Hui;Xu, Wen Jun;Li, Sheng Yu;Long, Cheng Zhi;Lin, Jia Ru
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.941-951
    • /
    • 2016
  • In this paper, cognitive radio and simultaneous wireless information and power transfer (SWIPT) are effectively combined to design a spectrum-efficient and energy-efficient transmission paradigm. Specifically, a novel SWIPT-based primary-secondary cooperation model is proposed to increase the transmission rate of energy/spectrum constrained users. In the proposed model, a multi-antenna secondary user conducts simultaneous energy harvesting and information forwarding by means of power splitting (PS), and tries to maximize its own transmission rate under the premise of successfully assisting the data delivery of the primary user. After the problem formulation, joint power splitting and beamforming optimization algorithms for decode-and-forward and amplify-and-forward modes are presented, in which we obtain the optimal PS factor and beamforming vectors using a golden search method and dual methods. Simulation results show that the proposed SWIPTbased primary-secondary cooperation schemes can obtain a much higher level of performance than that of non-SWIPT cooperation and non-cooperation schemes.