• Title/Summary/Keyword: Power Cycling Test

Search Result 40, Processing Time 0.036 seconds

A Study on Oriental Medicine Diagnostic Application through Analysis of Heart Rate Variability in Polycystic Ovary Syndrome Females (PCOS 여성의 HRV 특성 분석을 통한 한의학적 진단 활용성에 관한 연구)

  • Lee, Mi-Joo;Hwang, Deok-Sang;Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Khung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.4
    • /
    • pp.155-163
    • /
    • 2010
  • Purpose: The aim of the study was to compare the characteristics of the autonomic innervation of the heart in polycystic ovary syndrome(PCOS) patients with regulary cycling controls. Methods: We studied 21 patients visiting $\bigcirc\bigcirc$hospital from 25th June 2009 to 25th June 2010. The subjects were categorized in two groups, 11 PCOS patients and 10 healthy regularly cycling controls. We studied the difference of Heart rate variability (HRV) between two groups by Independent samples T-test using SPSS for windows(version 17.0). Results: The Standard deviation of all normal R-R intervals (SDNN), The spuare root of the sum of the spuare of difference between adjacent normal R-R intervals (RMS-SD) of PCOS group was non-significantly lower than non-PCOS group. High frequency power (HF) and Normalized high frequency power (HF norm) of PCOS group was significantly higher than non-PCOS group. Normalized low frequency power (LF norm) of PCOS was signficantly lower than non-PCOS group. The results means increased sympathetic and decreased vagal modulation. Total power (TP), Very low frequency power (VLF) of PCOS group was non-significantly lower than non-PCOS group. Low frequency power (LF), LF/HF ratio of PCOS group was non-significantly higher than non-PCOS group. Conclusion: The results suggest that PCOS can be related to decreased activity of parasympathetic nervous system.

Effects of Pinitol Supplementation and Strength Training on Anaerobic Performance and Status of Energy Substrates in Healthy Young Men

  • Lee, Dae-Taek;Lee, Woon-Yong
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.189-195
    • /
    • 2005
  • To assess the effect of pinitol supplementation and strength training for two weeks on the anaerobic capacity during and after exercise, and improvement of glucose metabolism during the recovery period of muscular fatigue with repeated acute bouts of cycling exercise, a total of 24 healthy young men were recruited and randomly and equally divided into three groups; pinitol supplementation group (PSG), placebo group (PLG), and control group (CON). Using a randomized double-blinded design, subjects in PSG were provided pinitol supplement, consumed orally 1.2 g/day, and participated in the resistance exercise program and cycling exercise for two weeks. Subjects in PLG underwent the same protocol as those in PSG but consumed the same amount of placebo. No supplementation and exercise program was given to CON. Before and after the intervention, all subjects were tested for their anaerobic capacities evaluated by Wingate test twice separated by 30 min. During the test, peak anaerobic power (PP), mean anaerobic power, total work, and fatigue index were evaluated During resting and recovery, blood samples were drawn and plasma pinitol, myo-inositol, chiro-inositol, insulin, free fatty acid, glucose, and lactate levels were analyzed After two weeks, PP and relative PP of the second biking were improved from the first biking in PSG only (p<0.05). No changes were found in all other variables of Wingate test in all groups. No statistical differences between groups and pre- and post-intervention were observed in concentrations of pinitol, myo-inositol, and chiro-inositol, but pinitol concentration was higher during recovery compared to the baseline in all groups and testings (p<0.05). Lactate level during recovery was higher than the resting level, but no other blood parameters were significantly changed. In conclusion, two weeks of pinitol supplementation in conjunction with short duration of anaerobic training in healthy young men did not induce any obvious benefits in terms of anaerobic capacity and energy metabolism Individual and/or population susceptibility may be one factor responsible for adopting pinitol supplementation.

Mechanism of shear strength deterioration of loess during freeze-thaw cycling

  • Xu, Jian;Wang, Zhangquan;Ren, Jianwei;Yuan, Jun
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.307-314
    • /
    • 2018
  • Strength of loess that experienced cyclic freeze and thaw is of great significance for evaluating stability of slopes and foundations in loess regions. This paper takes the frequently encountered loess in the Northwestern China as the study object and carried out three kinds of laboratory tests including freeze-thaw test, direct shear test and SEM test to investigate the strength behaviors of loess after cyclic freeze and thaw, and the correlation with meso-level changes in soil structure. Results show that for loess specimens at four dry densities, the cohesion decreases with freeze-thaw cycles until a residual value is reached and thus an exponential equation is proposed. Besides, little change in the angle of internal friction was observed as freeze-thaw proceeds. This may depend on the varying of soil structure, based on which a clue can be found from the surface morphology and mesoscopic scanning of loess specimens. Clearly we observed significant changes in surface morphology of loess and it tends to aggravate at higher water contents or more cycles of freeze and thaw. Moreover, freeze-thaw cycling leads to obvious changes in the meso-structure of loess including lowering the particle aggregates and increasing both the proportion of fine particles and porosity area ratio. A damage variable dependent on the ratio of porosity area is introduced based on the continuum damage mechanics and its correlation with cohesion is discussed.

An ionic liquid incorporated gel polymer electrolyte for double layer capacitors

  • Perera, Kumudu S.;Prasadini, K.W.;Vidanapathirana, Kamal P.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Energy storage devices have received a keen interest throughout the world due to high power consumption. A large number of research activities are being conducted on electrochemical double layer capacitors (EDLCs) because of their high power density and higher energy density. In the present study, an EDLC was fabricated using natural graphite based electrodes and ionic liquid (IL) based gel polymer electrolyte (GPE). The IL based GPE was prepared using the IL, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) with the polymer poly(vinyl chloride) (PVC) and the salt magnesium trifluoromethanesulfonate (Mg(CF3SO3)2 - MgTF). GPE was characterized by electrochemical impedance spectroscopy (EIS), DC polarization test, linear sweep voltammetry (LSV) test and cyclic voltammetry (CV) test. The maximum room temperature conductivity of the sample was 1.64 × 10-4 Scm-1. The electrolyte was purely an ionic conductor and the anionic contribution was prominent. Fabricated EDLC was characterized by EIS, CV and galvanostatic charge discharge (GCD) tests. CV test of the EDLC exhibits a single electrode specific capacitance of 1.44 Fg-1 initially and GCD test gives 0.83 Fg-1 as initial single electrode specific discharge capacitance. Moreover, a good stability was observed for prolonged cycling and the device can be used for applications with further modifications.

Life Evaluation of Long-time Used 1Cr-0.5Mo Main Steam Pipe (장기사용된 1Cr-0.5Mo 주증기관의 수명평가)

  • 백수곤;홍성인
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • Most fossil power plants and many critical components will be approaching the end of their nominal design life. At the same time, utilities are finding it economically attractive to extend the use of these plants for several more years, Especially Main steam pipe that operated under high temperature and pressure, often under the more severe operating conditions associated with cycling duty, is most important pipe system and critical component in fossil power plant. To extend the viability of older pipe system and to improve the operation and maintenance reliability, some technologies of precise diagnosis and life management have evolved out of the necessity. The purpose of this study is to descrive the related technologies and show the example of one power plants. The purpose of this study is to descrive the related technologies and show the example of one power plants. The stress analysis was done using ANSYS FEM Code. The branch area from main steam to turbine was the high stressed zone. To evaluate the degradation of the pipe material, replica, visual check, magnetic test, hardness test were done at the welding spot. The degradation level of welding point was E/F, so the remaining life of the welded area was about 0-25%.

  • PDF

EFFICIENT THERMAL MODELING IN DEVELOPMENT OF A SPACEBORNE ELECTRONIC EQUIPMENT

  • Kim Jung-Hoon;Koo Ja-Chun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.270-273
    • /
    • 2004
  • The initial thermal analysis needs to be fast and efficient to reduce the feedback time for the optimal electronic equipment designing. In this study, a thermal model is developed by using power consumption measurement values of each functional breadboard, that is, semi-empirical power dissipation method. In modeling heat dissipated EEE parts, power dissipation is imposed evenly on the EEE part footprint area which is projected to the printed circuit board, and is called surface heat model. The application of these methods is performed in the development of a command and telemetry unit (CTU) for a geostationary satellite. Finally, the thermal cycling test is performed to verify the applied thermal analysis methods.

  • PDF

Suggestion of Long-term Life Time Test for PV Module in Highly Stressed Conditions (가혹조건에서의 태양전지모듈 내구성 평가를 통한 최적의 시험조건 제안)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.63-68
    • /
    • 2010
  • To guarantee life time more than 20 years for manufacturer without stopping photovoltaic(PV) system, it is really important to test the module in realistic time and condition compared to outside weather. In here, we tested PV modules in highly stressed condition compared to IEC standards. In IEC 61215 and IEC 61646 standards, damp-heat, thermal cycle(TC200) and mechanical test are main test items for evaluating long-term durability of PV module in controlled temperature and humidity condition. So in this paper, we have lengthened the test time for TC200 and damp-heat test and increased the loading stress on surface of module. Through this test, we can get some clue of proper the method for measuring realistic life cycle of PV modules and suggested the minimum time for PV test method. The detail description is specified as the following paper.

Output Power Properties of Step-up Piezoelectric Transformer by heat-cold cycling test

  • Kim, In-Sung;Joo, Hyeon-Kyu;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung;Vo, Vietthang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.102-102
    • /
    • 2009
  • The piezoelectric transformer have attracted a lot of interest in recent years because of their potential applications in electronic devices. However, their reliability in practical applications has not been systematically studied. For many piezoelectric materials, the temperature reliability are among the biggest concerns. This paper presents an experimental study of the piezoelectric transformers with the focus on its reliability under varying temperature conditions.

  • PDF

Mechanical and Thermal Characteristics of Cement-Based Composite for Solar Thermal Energy Storage System (태양열 에너지 저장시스템 적용을 위한 시멘트 기반 복합재료의 역학 및 열적 특성)

  • Yang, In-Hwan;Kim, Kyoung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.9-18
    • /
    • 2016
  • The thermal and mechanical properties of fiber-reinforced cement-based composite for solar thermal energy storage were investigated in this paper. The effect of the addition of different cement-based materials to Ordinary Portland cement on the thermal and mechanical characteristics of fiber-reinforced composite was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with OPC and slag was greatest among cement-based composite. Thermal conductivity of mixtures including graphite was greater than that of any other mixtures, indicating favor of graphite for improving thermal transfer in terms of charging and discharging in thermal energy storage system. The addition of CSA or zirconium increased specific heat of fiber-reinforced cement-based composite. Test results of this study could be actually used for the design of thermal energy storage system in concentrating solar power plants.

An Experimental Analysis of the Ripple Current Applied Variable Frequency Characteristic in a Polymer Electrolyte Membrane Fuel Cell

  • Kim, Jong-Hoon;Jang, Min-Ho;Choe, Jun-Seok;Kim, Do-Young;Tak, Yong-Sug;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.82-89
    • /
    • 2011
  • Differences in the frequency characteristic applied to a ripple current may shorten fuel cell life span and worsen the fuel efficiency. Therefore, this paper presents an experimental analysis of the ripple current applied variable frequency characteristic in a polymer electrolyte membrane fuel cell (PEMFC). This paper provides the first attempt to examine the impact of ripple current through immediate measurements on a single cell test. After cycling for hours at three frequencies, each polarization and impedance curve is obtained and compared with those of a fuel cell. Through experimental results, it can be absolutely concluded that low frequency ripple current leads to long-term degradation of a fuel cell. Three different PEMFC failures such as membrane dehydration, flooding and carbon monoxide (CO) poisoning that lead to an increase in the impedance magnitude at low frequencies are simply introduced.