• Title/Summary/Keyword: Power Conversion Efficiency

Search Result 1,153, Processing Time 0.029 seconds

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

A study on the RF-DC Conversion Efficiency of Microstrip Patch Rectenna (Microstrip Patch 형 Rectenna의 변환효율 분석에 관한 연구)

  • Park, Yang-Ha;Youn, Dong-Gi;Kim, Kwan-Ho;Rhee, Young-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2177-2179
    • /
    • 2000
  • We designed and manufactured micros trip patch antenna mainly used in the Rectenna and then analysed RF-DC conversion efficiency of wireless power transmission system. We analyse conversion efficiency of load, direction of linear and dual polization rectenna. We found that the maximum efficiency would be about 70% of load and direction in patch type. In conclusion, we found that total conversion efficiency is 64%$\sim$71% in patch Rectenna.

  • PDF

Photovoltaic System Output Forecasting by Solar Cell Conversion Efficiency Revision Factors (태양전지 변환효율 보정계수 도입에 의한 태양발전시스템 발전량 예측)

  • Lee Il-Ryong;Bae In-Su;Shim Hun;Kim Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.188-194
    • /
    • 2005
  • There are many factors that affect on the system output of Photovoltaic(PV) power generation; the variation of solar radiation, temperature, energy conversion efficiency of solar cell etc. This paper suggests a methodology for calculation of PV generation output using the probability distribution function of irradiance, PV array efficiency and revision factors of solar cell conversion efficiency. Long-term irradiance data recorded every hour of the day for 11 years were used. For goodness-fit test, several distribution (unctions are tested by Kolmogorov-Smirnov(K-S) method. The calculated generation output with or without revision factors of conversion efficiency is compared with that of CMS (Centered Monitoring System), which can monitor PV generation output of each PV generation site.

Zero Voltage Switching Boost H-Bridge AC Power Converter for Induction Heating Cooker

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost H-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switch mode equivalent circuits and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft-switching(ZVS) operation ranges, and the power dissipation as compared with those of the conventional type high frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation(PWM) and pulse density modulation(PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

Analysing and comparing efficiency of harmonic reduction equipment for Induction Motor (유도전동기의 고조파 저감장치 성능 비교 분석)

  • Park, Yang-Birm;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.47-52
    • /
    • 2005
  • Recently, power conversion equipment increased rapidly makes a lot of harmonics. Thus, it is growing that wrong operation and break down of sensitive devices. There are two kinds of causes of harmonics. One of them is lots of power conversion equipment as modem controller, inverter, converter and SWS(Switching Mode Power Supply). Another is nonlinear operating machines as transformer and motor. The more nonlinear loads like them grow, the more serious problems as harmonic current to source and low power factor because of increasing reactive power grow. It is installed for reactor and L-C Filter to decrease harmonic in general. This paper analysis and compares two of characteristics and harmonic from reactor and L-C Filter with operation of induction motor and power conversion equipment. In the result, L-C Filter more improves unbalance rate and THD than reactor.

Power conversion control for zero emission buildings (탄소제로 빌딩을 위한 전력변환 제어)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.504-505
    • /
    • 2011
  • Decreasing actual greenhouse gas will be difficult if it is not solved addressed in architectural fields. Zero emission building or zero energy building, maximize the efficiency of energy, which means the building can operate by their own renewable energy facility without any other supplying. To be a zero emission building, a building needs realization of high efficiency low energy consumption, construction of building its own energy production facilities and lastly a power grid connection. According to increasing of DC load about TV, LED lighting, computer, IT in building for living and business, it is expected the save of energy when the system of AC power distribution change into the system of DC power distribution. Renewable energy exists a big different rate produced by outside environment. When electrical power overproduce, it can supply for system. Otherwise, if electrical power produce less, it can receive supply from system. Send and receive power can lead to zero to annual standard. This paper shows the simulation about efficient control of power conversion which is related to DC power distribution of architecture and DC output of renewable energy by using L-type converter.

  • PDF

DC-DC Converter Using a Coreless Printed Circuit Board (PCB) Transformer (코어 없는 PCB 변압기를 이용한 DC-DC 컨버터)

  • 황선민;안태영;최병조
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.9-12
    • /
    • 2000
  • This paper describes the modeling and experimental results of coreless printed circuit board (PCB) based transformer that can be used for power conversion at high frequency operation. The principle of using coreless PCB based transformer in 2MHz, 10W class ZVS Flyback DC-DC converter has been successfully demonstrated. The maximum power conversion efficiency is 79%. Even for high operating frequency, an efficiency greater than 70% can be obtained with under 1% regulation error.

  • PDF

The High efficiency Buck Power Conversion System for Photovoltaic Power Generator (태양광발전을 위한 고효율 승압형 전력변환장치)

  • 박경원;김영철;김준홍;서기영;고희석;이현우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.88-92
    • /
    • 1997
  • Power conversion system must be increased swiching frequency in order to achieve a small size, a light weight and a low noise, However, the swiches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft swiching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor suing step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as if makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional cirvuit. The result is the the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

Loss Analysis of Power Conversion Equipment for Efficiency Improvement (전력 변환 장치 효율 개선을 위한 손실 분석 연구)

  • Kim, Min-Kook;Woo, Dong-Gyun;Lee, Byoung-Kuk;Kim, Nam-Jun;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.80-90
    • /
    • 2014
  • This paper suggests loss analysis and calculation methods for efficiency improvement of power conversion equipment in detail. The detailed loss analysis and calculation has been conducted for 3.3kW On-board Battery Charger considering temperature condition. The validity of the analysis and calculation method is verified by simulation model.