• 제목/요약/키워드: Power Conditioning Unit

검색결과 80건 처리시간 0.022초

공동주택의 적정 환기량 및 필터의 선정 - 실내입자농도를 중심으로 - (Selection of Ventilation Rate and Filter for a Residential Housing in View of Indoor Particle Concentration)

  • 노광철;정의경;황정호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.517-522
    • /
    • 2008
  • Ventilation rate and filter were selected to simultaneously satisfy indoor air quality and minimize energy consumption in residential housing. The concentrations of indoor particles were calculated using an adapted mass balance model for various ventilation airflow rates. To satisfy the guidelines for indoor concentrations of particles, the minimum ventilation rates of 1.0/h, 0.6/h and 0.4/h were required for MERV11, MERV13 and MERV14, respectively. And the fan power consumptions induced by ducts, a heat exchanger and a filter were calculated for various ventilation airflow rates. The increase in the ventilation rate caused a dramatic increase in the power consumption, but the filter performance did not have much of an effect on the fan power for ventilation airflow rates lower than 0.4/h. The use of the ventilation filter of MERV 14 was suggested at a ventilation rate of 0.4/h when the fan power consumptions were considered in addition to the indoor concentrations of particles and $CO_2$. The use of the MERV14 filter at a ventilation rate of 0.6/h could be more effective than the additional use of an indoor air cleaner when the residential housing unit was ventilated.

  • PDF

순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석 (Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle)

  • 김세미;임영일
    • Korean Chemical Engineering Research
    • /
    • 제59권1호
    • /
    • pp.60-67
    • /
    • 2021
  • 본 연구에서는 CO2 포집을 포함하는 500 MWe 급 전기를 생산하는 순산소 석탄화력발전소에 대한 공정흐름도를 제시하였고, 기술경제성 평가를 수행하였다. 이 석탄화력발전소는 순환 유동층 보일러(CFB), 초초 임계 증기 사이클 증기 터빈, 보일러에서 배출되는 배기가스내 수분과 오염물질을 제거하는 배기가스 정제 장치(FGC), 산소 분리 초저온 공정(ASU), 이산화탄소를 분리하는 극저온 공정(CPU)을 포함한다. 건식 배기가스 재순환(FGR)은 CFB연소기내 온도 제어와 고농도 CO2 배출을 위하여 사용되었다. 이 순산소 석탄화력발전소의 열효율을 증가시키기 위하여 FGR 흐름에 대한 열교환, ASU에서 배출되는 질소 흐름에 대한 열교환, 그리고 CPU 내 기체 압축기의 열 회수를 고려하였다. FGR열교환기의 온도차(ΔT)의 감소는 배기가스의 더 많은 폐열 회수를 의미하며, 전기 및 엑서지 효율을 증가시켰다. FGR열교환기의 ΔT가 10 ℃ 에서 FGR과 FGC 주변의 연간 비용이 최소가 되었다. 이때, 전기 효율은 39%, 총투자비는 1371 M$, 총생산비용은 90 M$, 그리고 투자수익률은 7%/y, 그리고 투자회수기간은 12년으로 예측되었다. 본 연구를 통하여 순산소 석탄화력발전소의 열효율 향상을 위한 열교환망이 제시되었고, FGR 열교환기의 최적 운전 조건이 도출되었다.

병렬제어를 적용한 8kW급 영전압/영전류 풀 브릿지 DC-DC 컨버터 개발 (Development of 8kW ZVZCS Full Bridge DC-DC Converter by Parallel Operation)

  • 노민식
    • 전력전자학회논문지
    • /
    • 제12권5호
    • /
    • pp.400-408
    • /
    • 2007
  • 본 논문에서의 병렬제어를 이용한 8kW급 대용량 영전압/영전류 풀 브릿지 DC-DC 컨버터의 개발 결과를 보인다. 본 논문에서는 효율적인 시스템 구성을 위해 4-병렬 단위 모듈 운전을 제안한다. 각 단위모듈은 위상 천이 풀 브릿지를 채택하고, ZVZCS 운전을 위해 간단한 보조 회로를 2차측에 추가하였다. ZCS를 위한 보조 회로 동작 로직은 환류 모드 구간에서 1차측 전류를 제거하도록 구현하였다. 또한 병렬 운전시의 출력 전류의 균등 제어를 위해 위상천이로직을 활용한 Charge Control 방식을 적용하였다. 전압 제어기는 DSP TMS320LF2406을 활용하여 4 모듈의 출력전류 및 출력전압을 A/D로 입력받아 구현하였다. 개발된 컨버터는 차량에 설치되는 고속 발전기용 전력 변환기에 장착되었으며, 구축된 모니터링 시스템으로 고속 발전기의 실제 운전 조건에서 데이터를 획득하여, 분석을 통해 그 성능을 입증하였다.

해양심층수 기능성소금 제조를 위한 분무건조기 특성의 수치해석적 연구 (A Numerical Study on the Spray Dryer Characteristic for Manufacture of Deep Sea Water Salt)

  • 김현주;신필권;박성제
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 2003
  • Deep sea water has cold temperature, abundant nutrients and minerals, and good water quality that is pathogen-free and stable. Compared with surface water, deep sea water contains more nutrition salt, such as nitrogen and phosphor. Moreover, if has the good balance of minerals. Because of the ability of the spray drying process to produce a free-flowing power considering of spherical particles with a well-defined size distribution and the rapid drying times for heat-sensitive material, spray drying is attractive for a wide range of applications spray drying is a unique unit operation in which powders are produced from a liquid feed in a single processing step. Key component of the process are atomizer, spray chamber. Design of spray chamber should be based on the atomizer type, the production rate, and the particle size required. Because of the complex processes taking place during spray drying, traditional design method are based on pilot-plant tests and empirical scale-up rules. Modern technique such as CFD have a role to play in design and troubleshooting.

  • PDF

부산시 에너지마일리지제 시범운영을 통한 가정용 전력 소비절감 효과분석 (Study on the effect of reducing consumption of domestic electric power by managing model energy mileage system in Busan)

  • 이은주;배민호;김재민;송국섭;곽노열;옥성애
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.934-939
    • /
    • 2009
  • To promote citizen's involvement in the GHG(Green House Gas) reduction policy, Busan city administration adopted an pilot energy incentive system called 'energy mileage'. The energy mileage system was designed to make energy end-users motivated to reduce domestic electricity use by providing financial rewards. Through the course of the pilot period, 5,3330 householders volunteerly participated the pilot system. About 66% of the participants managed to make energy saving against the same period of the previous year while 38.8% achieved the targeted reduction rate(i.e. over 10%) and received the equivalent rewards.

  • PDF

축냉 시스템을 적용한 쇼케이스 운전에 대한 실험적 연구 (Experimental Study of Showcase Using Cold Storage System)

  • 이은지;이동원;김용찬
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1111-1116
    • /
    • 2008
  • The purpose of this study is to maintain high efficiency and reasonable use of cold-heat storage systems operated the showcase. An experimental study is carried out to manufacture the showcase system in a laboratory. Comparing the result at general operation condition with that at the new condition using ice storage system, this study showed the effects of the refrigerant sub-cooling, and with using inverter. At the condition using ice storage system, the ice making process was operated during midnight being not needed the cooling of the showcase through the continuous running of the condenser unit. And then, the refrigerant was sub-cooled using stored cold-heat after being discharged from the air cooling condenser during the day time. The cooling performance was increased owing to the sub-cooling of refrigerant during day time, hence the running time of the compressor was effectively decreased. In other words, this study showed that power consumption during daytime can be transferred to the midnight for making use of the refrigerant sub-cooling.

  • PDF

에어핸들링 유닛의 공기정화용 전기집진기의 방전극 비교 (Comparison of discharging electrodes for the electrostatic precipitator as an air filtration system in air handling units)

  • 신동호;우창규;김학준;김용진;한방우
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.11-16
    • /
    • 2017
  • Indoor air quality is of increasing concern because it is closely related human health. An air handling unit (AHU) can be used to control the indoor air quality related to particulate matters and $CO_2$ as well as air conditioning such as temperature and humidity of indoor air. An electrostatic precipitator has a high collection efficiency and low pressure drop, however, ozone can possibly generate from its chargers, which is one of drawbacks to apply it for indoor air control. Here we compared four charging electrodes such as a $50{\mu}m$ tungsten wire, a $100{\mu}m$ tungsten wire, a $16{\mu}m$-thickness Al foil and a carbon fabric comprised of $5-10{\mu}m$ fibers. The carbon fabric electrode showed a superior particle collection efficiency and a lower ozone generation at a given power consumption compared to tungsten wires of 50, $100{\mu}m$ and an Al foil electrode. This low ozone generating, micro-sized electrode can be applied to the electrostatic precipitator in AHU for indoor air control.

설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석 (Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System)

  • 김규생;이상혁;홍경표;원영재
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구 (Forecasting daily peak load by time series model with temperature and special days effect)

  • 이진영;김삼용
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.161-171
    • /
    • 2019
  • 일별 최대전력 수요 예측은 국가의 전력 수급운영에 중요한 과제로서 과거부터 다양한 방법들이 끊임없이 연구되어 왔다. 일별 최대전력 수요를 정확히 예측함으로써 발전설비에 대한 일일 운용계획을 작성하고 효율적인 설비 운용을 통해 불필요한 에너지 자원의 소비를 감소하는데 기여할 수 있으며 여름 겨울철 냉난방수요로 인해 발생하는 전력소비 과다로 인한 전력예비율 감소 문제 등에 선제적으로 대비할 수 있는 장점을 가진다. 이러한 일별 최대전력수요 예측을 위하여 본 논문에서는 Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, NNETAR 모형에 평일, 주말, 특수일에 대한 효과와 온도에 대한 영향을 함께 고려하여 다음날의 일별 최대전력을 예측하는 모형을 연구하였다. 본 논문을 통한 모형들의 예측 성능 평가 결과 요일, 온도를 고려할 수 있는 Seasonal Reg-ARIMA 모형과 NNETAR 모형이 이를 고려할 수 없는 다른 시계열 모형보다 우수한 예측 성능을 나타내었고 그 중 인공신경망을 활용한 NNETAR 모형의 예측 성능이 가장 우수하였다.