• Title/Summary/Keyword: Power Cables

Search Result 674, Processing Time 0.034 seconds

Nonchange of Grounding Current due to Equipment Measuring Insulation Resistance (절연저항 측정 장치에 의한 지락사고 전류의 비변화)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • With progress in industrialization, facilities for generating, delivering, and receiving high levels of electric power are in great demand. The scale of electric power equipment is increasing in both size and complexity. This has contributed to the development of our modern, high-tech and information-based society. However, if the generation of electric power is suspended due to unexpected accidents at power facilities or power stations, a range of equipment the operations of which are dependent on electric power can be damaged, causing substantial socioeconomic losses in an industrial society. A great deal of time and money would be expended to repair damaged facilities at a power station, causing enormous economic loss.In order to detect the deterioration processes of power cables, and to prevent the destruction of power cables, the operation status of power cables should be monitored on a regular basis. We have installed equipment at Korea Western Power Co., Ltd., located in Taean, in order to predict and prevent the destruction of power cables. This is an entirely new installation: a set of equipment invented specifically to measure the insulation resistance of power cables. Installation of the equipment does not cause the flow of earth fault current. This ensures accurate measurement of insulation resistance values by the equipment. We have been studying this equipment in order to develop preventive technology that would show the deterioration processes of power cables.

The functions & Requirements of the Semi-Conducting layer in the power cable. (전력 케이블에서 반도전층의 역할과 요구 특성)

  • Jung, Yun-Tack;Nam, Jong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.101-105
    • /
    • 2001
  • For high voltage XLPE power cables, semiconducting layers have been applied to prevent discharge at the interface between conductor and insulation, and/or insulation and external shielding layer. The semiconducting layers may be also effective to release electrical stress in the interface. The property of semiconducting layers are significantly related to the quality and reliability of power cables. Generally, these semiconducting layers are formed by extruding, the conductibility of the material is given by the carbon black mixed with base polymer. The life of power cables is depended on the smoothness of the interface between insulation and semiconducting layer. If the smoothness is no good, the life of power cables is shorter because the electrical stress and water tree is increased. The causes of no good smoothness are the void of the interface, the protrusions, the contaminants and impurities of the semiconducting layer. The selection and dispersion of the Carbon Black is the significant factor to determine the life of power cable in the manufacturing of semiconducting compound.

  • PDF

Detection and localization of partial discharge in high-voltage direct current cables using a high-frequency current transformer (HFCT를 활용한 고전압직류송전 케이블 부분방전 위치추정)

  • Hong, Seonmin;Son, Wooyoung;Cheon, Hyewon;Kang, Daekyoung;Park, Jonghoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.105-108
    • /
    • 2021
  • Detection and localization of partial discharge are considered critical techniques for estimating the lifetimes of power cables. High-frequency current transformers (HFCTs) are commonly used for the detection of partial discharge in high-voltage alternating current (HVAC) power cables; however, their applicability is compromised by the limitations of the installation locations. HFCTs are typically installed in cable terminals or insulation joint boxes because HVACs induce strong time-varying magnetic fields around the cables, saturating the ferromagnetic materials in the HFCTs. Therefore, partial discharges near the installation locations can be detected. In this study, the feasibility of partial discharge detection using a HFCT was investigated for high-voltage direct current (HVDC) cables. We demonstrated that the HFCT could be installed at any location in the HVDC power cable to monitor partial discharge along the entire cable length. Furthermore, we showed that the HFCT could detect the location of partial discharge with high accuracy.

Cryogenic Systems for HTS Power Cables

  • Yeom, Han-Kil;Koh, Deuk-Yong;Lee, Bong-Kyu;Kim, Ig-Seang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.133-135
    • /
    • 2003
  • Cryogenic systems are requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen at latm or sub-cooled LN2 above latm. HTS power cable needs sufficient refrigeration to overcome its low temperature heat loading. This loading typically cones in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper explains the cooling test system of 10m HTS power cable. This system is composed of storage dewar, auto fill system, core cryostat and cold-box. Storage dewar is a LN2 storage tank and auto fill system is a LN2 supply device to the sub-cooler, Core cryostat is a LN2 flow line. Cold box is a control unit of temperature and flow rate. It is composed of control valve, flow meter, sub-cooler and circulation pump, etc..

Concept Design of Superconductivity Power System (대용량 초전도 신전력계통 개념설계)

  • Lee, S.;Kim, J.;Yoon, J.;Lee, B.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.300-301
    • /
    • 2006
  • Korean power system has some problems like as curtailing investment and the NIMBY (Not In My Back Yard) phenomena, because of power demand concentration in downtown area. In this time, superconducting power devices rise as a very attractive solution. This study proposes a basic concept of superconductivity power system with bulk capacity, and identifies the items for technical and economic analysis. The proposed system consists of superconducting cables/transformers/FCLs(fault current limiter). The basic concept is to replace 154kV conventional cables with 22.9kV superconducting cables and to convert a 154kV substation into a 22.9kV switching station in downtown area.

  • PDF

Concept Design of Superconducting Power System with Distributed Switching Station in Downtown Area (대도심 분산형 배전개폐소를 적용한 초전도 전력시스템 개념설계)

  • Lee, Seung-Ryul;Kim, Jong-Yul;Yoon, Jae-Young;Lee, Byong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.522-528
    • /
    • 2006
  • Korean power system has some problems like as curtailing investment and the NIMBY (Not In My Back Yard) phenomena, because of power demand concentration in downtown area. In this time, superconducting power devices rise as a very attractive solution. This study proposes a basic concept of superconductivity power system with distributed switching station, and identifies the items for technical and economic analysis. The proposed system consists of superconducting cables/ transformers/FCLs(fault current limiters). The basic concept is to replace 154kV conventional cables with 22.9kV superconducting cables and to convert a 154kV substation into 22.9kV distributed switching stations in downtown area.

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

  • Jung, Chae-Kyun;Jung, Yeon-Ha;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.628-634
    • /
    • 2014
  • This paper investigates the transient characteristics of grounding systems used in under-ground distribution power cables. Recently, two kinds of grounding system are used for underground distribution cables in Korea. The first one is conventional multi-point grounding system, the other is newly proposed non-bundled common grounding system. The non-bundled common grounding system has an advantage the decreasing the power loss due to decrease of the shield circulation current. In this paper, the lightning overvoltage induced in neutral wire (in case of non-bundled common grounding system, overvoltage between opened neural wires and grounding in each phase) of these two kinds of grounding systems are estimated and compared by field tests and EMTP simulations. The EMTP simulation methods are firstly verified by comparison of measurement and simulation. Finally, the insulation level against lightning is expected by EMTP simulation results using verified model.

Analysis of Sheath Temperatures and Load Currents Dependent on Conductor Temperatures in Live 6kV CV Cables Operating at a Power Station (발전소에서 운전 중인 활선 6 kV CV 단심 cable의 도체온도에 따른 피복 표면온도 및 부하전류 특성 분석)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • The only method used in the power stations in order to deliver generated electric power is 6 kV XLPE (or CV) single core cables. Among many kinds of accidents happening in the power stations, the outbreak of fire due to the deterioration of live cables causes enormous socioeconomic losses. From the installation of the cables, the management and diagnose should be thoroughly made. Even though it differs depending on the installations and usage conditions, the cross-sectional area of cables is in shortage. The excessive allowable temperature caused from the current causes the deterioration of cables. In order to prevent an unexpected breakdown of live cables, we have invented a device to monitor and diagnose the status of cables. We have installed our device in the Korea Western Power Co., Ltd.. In this paper, we present our research results in situ that we have obtained by measuring the temperature of sheath, changing with the surrounding circumstances, especially ambient temperatures. We also show our study results of characteristics for temperature of sheath surface and load current at the ambient temperatures of $40^{\circ}C-10^{\circ}C$.

Cooling Test of The HTS Power Cable (초전도케이블 냉각시험)

  • 염한길;고득용;홍용주;김익생;김춘동;김도형
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.295-297
    • /
    • 2003
  • Cryogenic systems is requirement for the operation of HTS power cables. In general, HTS power cables require temperature below 77K, a temperature that can be achieved from the liquid nitrogen or sub-cooled LN2. HTS power cable is needed for sufficient refrigeration to overcome its low temperature heat loading. This loading typically comes in two forms : (1) heat leaks from the surroundings and (2) internal heat generation. This paper is a explanation for the cooling test of 10m HTS power cable.

  • PDF

Design and Fabrication of Signal and Power Transmission Textile Cable for Smart Wearables (스마트 웨어러블의 신호와 전력 전송용 섬유형 케이블 개발)

  • Lee, Hyewon;Im, Hyo bin;Roh, Jung-Sim
    • Fashion & Textile Research Journal
    • /
    • v.20 no.5
    • /
    • pp.616-620
    • /
    • 2018
  • Recently, many researches have been conducted to improve the performance and wearability of smart wearables. In this study, we designed and fabricated the signal and power transmission textile cables for smart wearables which have excellent wearability, durability and reliability. For the signal transmission textile cables, conductive yarns for the signal line and the ground line were developed. Three types of signal transmission textile cables have been developed using the conductive yarns. Linear density, tensile properties, electrical resistance and RF characteristics were tested to characterize the physical and electrical properties of three signal transmission textile cables. The conductive yarns have the very low resistance of $0.05{\Omega}/cm$ and showed excellent uniformity of electric resistance. Therefore, the electrical resistance of the signal transmission fiber cable can be reduced by increasing the number of conductive yarns used in signal and ground lines. However, the radio frequency (RF) characteristics of the signal transmission textile cables were better as the number of strands of the conductive yarns used was smaller. This is because the smaller the number of strands of conductive yarn used in signal transmission textile cables, the narrower and more parallel the distance between the signal line and the ground line. It is expected that the signal and power transmission textile cable for signal and power transmission will be utilized in smart wearable products.