• Title/Summary/Keyword: Powdered infant formula milk

Search Result 8, Processing Time 0.022 seconds

Thermal Resistance and Inactivation of Enterobacter sakazakii Isolates during Rehydration of Powdered Infant Formula

  • Kim, Soo-Hwan;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.364-368
    • /
    • 2007
  • Enterobacter sakazakii may be related to outbreaks of meningitis, septicemia, and necrotizing enterocolitis, mainly in neonates. To reduce the risk of E. sakazakii in baby foods, thermal characteristics for Korean E. sakazakii isolates were determined at 52, 56, and $60^{\circ}C$ in saline solution, rehydrated powdered infant formula, and dried baby food. In saline solution, their D-values were 12-16, 3-5, and 0.9-1 min for each temperature. D-values increased to 16-20, 4-5, and 2-4 min in rehydrated infant formula and 14-17, 5-6, and 2-3 min in dried baby food. The overall calculated z-value was 6-8 for saline, 8-10 for powdered infant formula, and 9-11 for dried baby food. Thermal inactivation of E. sakazakii during rehydration of powdered infant formula was investigated by viable counts. Inactivation of cultured E. sakazakii in infant formula milk did not occur for 20 min at room temperature after rehydration with the water at $50^{\circ}C$ and their counts were reduced by about 1-2 log CFU/g at $60^{\circ}C$ and 4-6 log CFU/ml with the water at 65 and $70^{\circ}C$. However, the thermo stability of adapted E. sakazakii to the powdered infant formula increased more than two times. Considering that the levels of E. sakzakii observed in powdered infant formula have generally been 1 CFU/100 g of dry formula or less, contamination with E. sakazakii can be reduced or eliminated by rehydrating water with at least $10^{\circ}C$ higher temperature than the manufacturer-recommended $50^{\circ}C$.

Determination of L-Carnitine in Infant Powdered Milk Samples after Derivatization

  • Park, Jung Min;Koh, Jong Ho;Kim, Jin Man
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.731-738
    • /
    • 2021
  • Herein, a novel analytical method using a high-performance liquid chromatography-fluorescence detector (HPLC/FLD) is developed for rapidly measuring an L-carnitine ester derivative in infant powdered milk. In this study, solid-phase extraction cartridges filled with derivatized methanol and distilled water were used to effectively separate L-carnitine. Protein precipitation pretreatment was carried out to remove the protein and recover the analyte extract with a high recovery (97.16%-106.56%), following which carnitine in the formula was derivatized to its ester form. Precolumn derivation with 1-aminoanthracene (1AA) was carried out in a phosphate buffer using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) as the catalyst. Method validation was performed following the AOAC guidelines. The calibration curves were linear in the L-carnitine concentration range of 0.1-2.5 mg/L. The lower limit of quantitation and limit of detection of L-carnitine were 0.076 and 0.024 mg/L, respectively. The intra- and interday precision and recovery results were within the allowable limits. The results showed that our method helped reduce the sample preparation time. It also afforded higher resolution and better reproducibility than those obtained by traditional methods. Our method is suitable for detecting the quantity of L-carnitine in infant powdered milk containing a large amount of protein or starch.

Potential Pathogen Monitoring of Powdered Infant Formula Milk and Related Products in Korea (국내산 조제유류에서의 위해 미생물 모니터링)

  • Kim, Young-Jo;Moon, Jin-San;Park, Hyun-Jung;Heo, Eun-Jeong;Kim, Ji-Ho;Lee, Hee-Soo;Wee, Sung-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.341-345
    • /
    • 2010
  • Three-hundred samples of powdered infant formula milk and related products from four different manufacturers in 2010 were collected and surveyed their contaminations for aerobic bacteria, coliform, Enterobacter(Cronobacter) sakazakii, and food-borne pathogens. Fifteen samples of sterilized infant formula milk were all negative on these microorganisms. In all collected products of un sterilized infant formulas and follow-on infant formulas, aerobic bacteria were detected at 239 (83.9%) among 285 samples, and they all were found below $10^3$ cfu/g. Coliform bacteria were also detected at four among 285 samples. Salmonella spp. and Ent. sakazakii, weren't detected at the all samples. Bacillus cereus was detected at 24 (8.4%) among 285 samples. The level of B. cereus was below 100 cfu/g but it was suitable for the range of specification of B. cereus in infant formulas. Clostridium perjringens, Escherichia coli O157:H7, Staphylococcus aureus and Listeria monocytogenes weren't also detected. In consequence, it was suitable for total viable count, coliform and potential pathogen to the specification of infant formulas and related products.

Development of Pretreatment Method for Analysis of Vitamin B12 in Cereal Infant Formula using Immunoaffinity Chromatography and High-Performance Liquid Chromatography

  • Park, Jung Min;Koh, Jong Ho;Kim, Jin Man
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.335-342
    • /
    • 2021
  • Vitamin B12 deficiency may lead to serious health issues in both infants and adults. A simple analytical method involving sample pretreatment with enzyme, followed by cyanide addition under acidic conditions; separation on an immunoaffinity column; and high-performance liquid chromatography (HPLC) was developed for the rapid detection and quantitation of vitamin B12 in powdered milk. Detection limit and powdered milk recovery were determined by quantitative analysis. The limits of detection and quantitation were 2.71 and 8.21 ㎍/L, respectively. Relative standard deviations of the intra-day and inter-day precisions varied in the ranges of 0.98%-5.31% and 2.16%-3.90%, respectively. Recovery of the analysis varied in the range of 83.41%-106.57%, suggesting that the values were acceptable. Additionally, vitamin B12 content and recovery in SRM 1849a were 54.10 ㎍/kg and 112.24%, respectively. Our results suggested that the analytical method, including the sample pretreatment step, was valid. This analytical method can be implemented in many laboratory-scale experiments that seek to save time and labor. Therefore, this study shows that immunoaffinity-HPLC/ultraviolet is an acceptable technique for constructing a reliable database on vitamin B12 in powdered milk containing starch as well as protein and/or fat in high amounts.

Study on the Mineral Contents of Commercial powdered infant formula (유아용 조제분유의 무기물 함량에 관한 연구)

  • Kim, Min-Jung;Park, Eun-Kyung;Jun, Mi-Ra;Kim, Young-Gil
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.836-840
    • /
    • 2007
  • This study was conducted to investigate mineral contents of commercial powdered infant formula for obtaining basic data on infant nutrition. 11 Commercial infant formula based on cow's milk were collected and the contents of macro minerals (calcium, phosphorous, sodium, potassium and magnesium) and trace minerals (iron, zinc and copper) were compared with Dietary Reference Intakes for Koreans (KDRIs). The overall mineral contents in 100 g and in 100 kcal of infant formula satisfied the recommended formula regulation and Codex. In infant formula during 0-5 monthly age, calcium, phosphorous, sodium, potassium, magnesium, zinc and copper could supply 233.1%, 273.5%, 156.7%, 142.0%, 150.8%, 209.3%, 171.1% of recommended daily mineral intakes, respectively. The content of iron in 0-5 monthly age formula supplied2842.6% of recommended daily iron intakes. In infant formula during 6-11 monthly age, calcium, phosphorous, potassium, magnesium, iron, zinc and copper satisfied their recommended daily intakes. However, sodium only supplied 76.6% of its recommended daily intake. Intake ratio between Ca/P, Ca/Mg, Ca/Fe, Na/K and Zn/cu in infant formula during 0-5 monthly age were 1.7±0.2, 11.0±2.4,64.9±10.0, 0.3±0.1, and 9.6±1.0, respectively. Intake ratio between Ca/P, Ca/Mg, Ca/Fe, Na/K and Zn/cu in infant formula during 6-11 monthly age were 1.7${\pm}$0.2, 12.9${\pm}$1.5, 80.1${\pm}$13.8, 0.3, and 9.4${\pm}$1.1,respectively. From this study, evaluation of mineral contents of commercial infant formula was established, which could strengthen the basic information on infant nutrition.

Study on the Vitamin Contents of Commercial Powdered Infant Formula (국내 시판 유아용 고형 조제분유의 비타민 함량에 관한 조사)

  • Bae, Hae-Jin;Jun, Mi-Ra;Kim, Young-Gil
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1689-1694
    • /
    • 2007
  • This study was conducted to investigate both fat-soluble and water-soluble vitamin contents of commercial powdered infant formula for obtaining basic data on infant nutrition. Ten commercial infant formula based on cow's milk were collected and the contents of fat-soluble vitamins (vitamin A, D, E, K) and water-soluble vitamins (vitamin C, thiamin, riboflavin, niacin, $B_6$, folate, $B_{12}$, pantothenic acid, biotin) were compared with Dietary Reference Intakes for Koreans (KDRIs). The overall vitamin contents in 100 g and in 100 kcal of infant formula satisfied the recommended formula regulation (KDRIs) and Codex. In infant formula during 0-5 monthly age, fat-soluble vitamin A, D, E, K could supply 178.6%, 205.3%, 208.4%, 976.3% of adequate daily vitamin intakes, respectively. Water soluble vitamins, vitamin C, thiamin, riboflavin, niacin, $B_6$, folate, $B_{12}$, pantothenic acid, biotin could supply 173.2%, 237.2%, 269.8%, 295.9%, 431.6%, 165.8%, 1186.3%, 203.8%, 408.3% of adequate daily vitamin intakes, respectively. In infant formula during 6-11 monthly age, all vitamins satisfied their adequate daily intakes as well. Vitamin A, D, E, K supplied 199.2%, 262.3%, 220.5%, 626.46% of adequate daily vitamin intakes. Vitamin C, thiamin, riboflavin, niacin, $B_6$, folate, $B_{12}$, pantothenic acid, biotin could supply 179.5%, 210.2%, 264.7%, 241.5%, 206.0%, 166.9%, 699.5%, 247.0%, 475.0% of adequate intake of KDRIs. From this study, evaluation of vitamin contents of commercial infant formula was established, which could strengthen the basic information on infant nutrition.

Effect of Hot Water and Microwave Heating on the Inactivation of Enterobacter sakazakii in Reconstituted Powdered Infant formula and Sunsik (열수(熱水)와 마이크로웨이브 가열이 조제분유 및 선식 용해 중 Enterobacter sakazakii 사멸에 미치는 영향)

  • Kim, Jung-Beom;Park, Yong-Bae;Lee, Myung-Jin;Kim, Ki-Cheol;Huh, Jeong-Weon;Kim, Dae-Hwan;Lee, Jong-Bok;Kim, Jong-Chan;Choi, Jae-Ho;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • Enterobacter sakazakii was initially referred to as yellow-pigmented Enterobacter cloacae and reclassified in 1980. E. sakazakii infection cause life-threatening meningitis, septicemia, and necrotizing enterocolitis in infants. Powdered infant formula (PIF) and baby foods may be the important vehicle of E. sakazakii infection. It has been reported that E. sakazakii was isolated from PIF and sunsik ingredients produced in Korea. Some infants have been fed sunsik as a weaning diet. Therefore, it is necessary that this organism should be inactivated on preparing PIF and sunsik at homes and in hospitals. The cocktail of three Korean E. sakazakii strains (human, sunsik and soil isolates) were used to investigate the inactivation of this organism with hot water at 50, 60, 65, 70 and $80^{\circ}C$ and microwave heating for 60, 75, 90, 105 and 120 sec. Reconstituted PIF and sunsikwere inoculated with cocktailed vegetative cells of E. sakazakii at 6 log CFU/mL. Thermal inactivation of vegetative cells of E. sakazakii were achieved by reconstituted PIF and sunsik with hot water at $60^{\circ}C$ or greater and with microwave heating at 2,450 MHz for 75 sec or longer. Considering that biofilm formation of E. sakazakii was adapted to survive the dry environment that is PIF and sunsik and thermal resistance increased, it is suggested that inactivation of E. sakazakii was used by hot water at $70^{\circ}C$ or greater and microwave heating for 90 sec or longer. Reconstituted PIF and sunsik were inoculated with cocktailed vegetative cells of E. sakazakii at 2 to 3 log CFU/mL to investigate the growth curve of this organism and stored at 5, 10, 15, 20, 25, 30 and $35^{\circ}C$. Viable counts slightly changed at 5, $10^{\circ}C$ during 48 h but grew at $15^{\circ}C$ or greater. Considering that E. sakazakii is able to grow in infant formula milk at refrigerator temperature, reconstituted PIF and sunsik that are not immediately consumed should be discarded or stored at refrigeration temperatures within 24 h.

Multiple Confirmation and RAPD-genotyping of Enterobacter sakazakii Isolated from Sunsik (선식에서 분리한 Enterobacter sakazakii의 복합동정 및 RAPD를 이용한 genotyping)

  • Choi, Jae-Won;Kim, Yun-Ji;Lee, Jong-Kyung;Kim, Young-Ho;Kwon, Ki-Sung;Hwang, In-Gyun;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • Enterobacter sakazakii is implicated in severe forms of neonatal infections such as meningitis and sepsis. This organism has been isolated from a wide range of foods, including cheese, vegetables, grains, herbs, and spices, but its primary environment is still unknown. Generally, dried infant milk formula has been epidemiologically identified as the source of E. sakazakii. Sunsik (a powdered mixture of roasted grains and other foodstuffs) is widely consumed in Korea as a side dish or energy supplement. Sunsik is consumed without heat treatment; thus, lacking an additional opportunity to inactivate foodborne pathogens. Therefore, its microbiological safety should be guaranteed. In this study, the prevalence of E. sakazakii was monitored in 23 different sunsik component flours, using FDA recommended methods; but E. sakazakii medium (Neogen) and Chromogenic E. sakazakii medium (Oxoid) were used as the selective media. In total, presumptive E. sakazakii strains were isolated from 8 different sunsik powders. Subsequently, an API 20E test was conducted, and 15 strains from 5 different sunsik flours (sea tangle, brown rice, non-glutinous rice, cheonggukjang, dried anchovy) were confirmed as E. sakazakii. Fifteen strains were again confirmed by PCR amplification, using three different primer sets (tDNA sequence, ITS sequence, 16S rRNA sequence), and compared to ATCC strains (12868, 29004, 29544, 51329). They were once again confirmed by their enzyme production profiles using an API ZYM kit. Finally, RAPD (random amplified polymorphic DNA)-genotyping was carried out as a monitoring tool to determine the contamination route of E. sakazakii during processing.