• Title/Summary/Keyword: Powder rolling

Search Result 98, Processing Time 0.028 seconds

Rolling Contact Fatigue Property of Sintered and Carburized Compacts Made of Molybdenum Hybrid-alloyed Steel Powder

  • Unami, Shigeru;Ozaki, Yukiko;Uenosono, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.144-145
    • /
    • 2006
  • A developed molybdenum hybrid-alloyed steel powder is based on a molybdenum prealloyed steel powder to which molybdenum powder particles are diffusion bonded. The sintered compact made of this powder has a finer pore structure than that of the conventional molybdenum prealloyed steel powder, because the ferritic iron phase $({\alpha}-phase)$ with a high diffusion coefficient is formed in the sintering necks where molybdenum is concentrated resulting in enhanced sintering. The rolling contact fatigue strength of the sintered and carburized compacts made of this powder improved by a factor of 3.6 compared with that of the conventional powder due to the fine pore structures.

  • PDF

Mechanical Properties and Texture after Thermomechanical Treatment of Al/Al2O3 Composite Fabricated by Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 Al/Al2O3 복합재료의 가공열처리후의 기계적 성질 및 집합조직)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.235-240
    • /
    • 2003
  • The $Al/Al_2O_3$ composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50$0^{\circ}C$, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30$0^{\circ}C$. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20$0^{\circ}C$. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.

Sintering and Rolling Behavior of Cu-50In-13Ga Ternary Alloy Powder for Sputtering Target (스퍼터링 타겟용 Cu-50In-13Ga 3원계 합금 분말의 소결 및 압연 거동)

  • Kim, Dae-Won;Kim, Yong-Ho;Kim, Jung-Han;Kim, Dae-Guen;Lee, Jong-Hyeon;Choi, Kwang-Bo;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.264-270
    • /
    • 2012
  • In this study, we mainly focus on the study of densification of gas-atomized Cu-50 wt.%In-13 wt.%Ga alloy powder without occurrence of crack during the forming process. Cu-50 wt.%In-13 wt.%Ga alloy powder was consolidated by sintering and rolling processes in order to obtain high density. The phase and microstructure of formed materials were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM), respectively. Warm rolling using copper can result in the improvement of density. The specimen obtained with 80% of rolling reduction ratio at $140^{\circ}C$ using cooper can have the highest density of $8.039g/cm^3$.

Microstructure and Mechanical Properties of (SiC)p/Al Composite Fabricated by a Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 (SiC)p/Al 복합재료의 미세조직 및 기계적 성질)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.259-264
    • /
    • 2004
  • Aluminum based metal matrix composite reinforced with SiC particles was fabricated by the powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. Mixture of aluminum powder and SiC particles of which volume content was varied from 5 to 20vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The rolled specimen was sintered at 56$0^{\circ}C$ for 0.5hr. The tensile strength of the (SiC)$_{p}$/Al composite increased with the volume content of SiC particles, and at 20vol.% it reached a maximum of 100㎫ which is 1.6 times higher than unreinforced material. The elongation decreased with the volume content of $Al_{2}$O$_{3}$ particles. The mechanical properties of the (SiC)$_{p}$/Al composite fabricated by the powder-in sheath rolling is compared with that of (Al$_{2}$O$_{3}$)$_{p}$/Al composite by the same process.ess.

Evolution of temperature gradients during rolling of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ bulk metallic glass in the super cooled liquid region (Cu기 비정질 합금의 과냉각 액상구간에서 온간 압연시 Roll 온도의 영향)

  • Park, E.S.;Lee, J.H.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.409-412
    • /
    • 2006
  • Bulk metallic glass (BMG) strips of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ were produced by warm rolling of the amorphous powder canned with copper. Controlling of temperatures of the rolled sample and rolls was essential for the successive rolling process. Because improper controlling of the sample temperature gave rise to the crystallization of BMG loading to the catastrophic fracture of BMG strips, the temperature of rolls should be properly controlled for achieving successful powder rolling of BMG. The variations of the strain state and temperature in the roll gap was simulated by the finite element method(FEM) using various roll temperatures.

  • PDF

Microstructure and Mechanical Properties of CNT/Al Composite Fabricated by a Powder-in-Sheath Rolling Method utilizing Copper Tube as a Sheath (구리튜브를 피복재로 이용한 분말시스압연법에 의해 제조된 CNT/Al 복합재료의 미세조직 및 기계적 특성)

  • Lee, Seong-Hee
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.343-348
    • /
    • 2014
  • A powder-in-sheath rolling (PSR) process utilizing a copper alloy tube was applied to a fabrication of a multi-walled carbon nanotube (CNT) reinforced aluminum matrix composite. A copper tube with an outer diameter of 30 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol% was filled in the tube by tap filling and then processed to 93.3% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the PSR decreased slightly with increasing of CNTs content, but showed high value more than 98%. The average hardness of the 5%CNT/Al composite increased more than 3 times, compared to that of unreinforced pure Al powder compaction. The hardness of the CNT/Al composites was some higher than that of the composites fabricated by PSR using SUS304 tube. Therefore, it is concluded that the type of tube affects largely on the mechanical properties of the CNT/Al composites in the PSR process.

Surface Densification Coupled with Higher Density Processes Targeting High-performance Gearing

  • Hanejko, Francis;Rawlings, Arthur;King, Patrick;Poszmik, George
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.738-739
    • /
    • 2006
  • This paper will describe a powder and processing method that facilitates single press-single sintered densities approaching $7.5g/cm^3$. At this sintered density, mechanical properties of the powder metal (P/M) component are significantly improved over current P/M technologies and begin to approach the performance of wrought steels. High performance gears have the added requirement of rolling contact fatigue durability that is dependent upon localized density and thermal processing. Combining high density processing of engineered P/M materials with selective surface densification enables powder metal components to achieve rolling contact fatigue durability and mechanical property performance that satisfy the performance requirements of many high strength automotive transmission gears. Data will be presented that document P/M part performance in comparison to conventional wrought steel grades.

  • PDF

Densification Behavior of Titanium in Direct Powder Rolling Process (분말직송압연 티타늄의 치밀화 거동)

  • Kang, Dong-Hwan;Hong, Jae-Keun;Park, Nho-Kwang;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1255-1260
    • /
    • 2012
  • The densification behavior of titanium powder in the direct powder rolling process was investigated. An analytical model for the roll-backlash phenomenon during this process was proposed to conduct a realistic finite element analysis. Furthermore, the roll-backlash was quantitatively analyzed, and the relative densities of the greenstrip along the rolling direction were precisely estimated. Finally, the slip and nip phenomena were identified by calculating the contact pressure and shear stress between the titanium powder and the roller in order to understand the densification behavior of the powder during the rolling process.

Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders (Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향)

  • Kim, H.J.;H.Lee, J.;Lee, S.H.;Park, E.S.;Huh, M.Y.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF

Accumulative Roll-Bonding of Al Powder Compact Fabricated by a Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 Al 분말성형체의 반복겹침접합압연)

  • Lee, Seong-Hee
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • An aluminum powder compact consolidated by a powder-in sheath rolling (PSR) method was severely deformed by accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubrication. Optical microscope and transmission electron microscope observations revealed that microstructure of the ARB-processed Al powder compact is inhomogeneous in the thickness direction. The ultra-fine subgrains often reported in the ARB-processed bulky materials were also developed near surface of the Al powder compacts in this study. Tensile strength of the ARB-processed Al powder compact increased at the 1st cycle, but from the 2nd cycle it rather decreased slightly.