DOI QR코드

DOI QR Code

Sintering and Rolling Behavior of Cu-50In-13Ga Ternary Alloy Powder for Sputtering Target

스퍼터링 타겟용 Cu-50In-13Ga 3원계 합금 분말의 소결 및 압연 거동

  • Kim, Dae-Won (Automotive Components R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Yong-Ho (Automotive Components R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Jung-Han (Automotive Components R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Dae-Guen (Automotive Components R&D Group, Korea Institute of Industrial Technology) ;
  • Lee, Jong-Hyeon (Chungnam National University) ;
  • Choi, Kwang-Bo (Changsung co.) ;
  • Son, Hyeon-Taek (Automotive Components R&D Group, Korea Institute of Industrial Technology)
  • 김대원 (한국생산기술연구원 동력부품연구그룹) ;
  • 김용호 (한국생산기술연구원 동력부품연구그룹) ;
  • 김정한 (한국생산기술연구원 동력부품연구그룹) ;
  • 김대근 (한국생산기술연구원 동력부품연구그룹) ;
  • 이종현 (충남대학교) ;
  • 최광보 ((주)창성) ;
  • 손현택 (한국생산기술연구원 동력부품연구그룹)
  • Received : 2012.05.11
  • Accepted : 2012.07.23
  • Published : 2012.08.28

Abstract

In this study, we mainly focus on the study of densification of gas-atomized Cu-50 wt.%In-13 wt.%Ga alloy powder without occurrence of crack during the forming process. Cu-50 wt.%In-13 wt.%Ga alloy powder was consolidated by sintering and rolling processes in order to obtain high density. The phase and microstructure of formed materials were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM), respectively. Warm rolling using copper can result in the improvement of density. The specimen obtained with 80% of rolling reduction ratio at $140^{\circ}C$ using cooper can have the highest density of $8.039g/cm^3$.

Keywords

References

  1. V. Probst, W. Stetter, W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K. D. Ufert, B. Freienstein, H. Cerva and F. H. Karg: Thin Solid Films, 387 (2001) 262. https://doi.org/10.1016/S0040-6090(00)01800-9
  2. N. G. Dhere: Sol. Energy Mater. Sol. Cells, 91 (2007) 1376. https://doi.org/10.1016/j.solmat.2007.04.003
  3. B. Dimmler and R. W R. Wr: Thin Solid Films, 515 (2007) 5973. https://doi.org/10.1016/j.tsf.2006.12.150
  4. T. Nakano, T. Suzuki, N. Ohnuki and S. Baba: Thin Solid Films, 334 (1998) 192. https://doi.org/10.1016/S0040-6090(98)01142-0
  5. Z. Ning, Z. Da-Ming and Z. Gong: Materials Science and Engineering B (2010) 34-40.
  6. J. W. Lim, J. W. Bae, Y. F. Zhu, S. Lee, K. Mimura and M. Isshiki, Surf. Coat. Technol., 201 (2006) 1899. https://doi.org/10.1016/j.surfcoat.2006.01.009
  7. J. Sarkar, P. McDonald and P. Gilman: Thin Solid Films, 517 (2009) 1970. https://doi.org/10.1016/j.tsf.2008.10.065
  8. B. C. Choi, D. Y. Park, H. J. Kim, I. K. Oh and K. A. Lee, J. Korean Powder Metall. Inst., 18 (2011) 552. (Korean) https://doi.org/10.4150/KPMI.2011.18.6.552
  9. K. S. Cho, I. B. Song, M. H. Chang, J. H. Yun, M. H. Oh, J. K. Hong and N. K. Park: J. Korean Powder Metall Inst., 17 (2010) 365. (Korean) https://doi.org/10.4150/KPMI.2010.17.5.365
  10. G. Bertrand, S. Deleonibus, B. Previtali, G. Guegan, X. Jehl, M. Sanquer and F. Balestra: Solid-State Electron, 48 (2004) 505. https://doi.org/10.1016/j.sse.2003.09.026
  11. M. Moriyama, T. Morita, S. Tsukimoto, M. Shimada and M. Murakami: Mater. Trans., 46 (2005) 1036. https://doi.org/10.2320/matertrans.46.1036
  12. M. Purwins, R. Enderle, M. Schmid, P. Berwian, G. Müller, F. Hergert, S. Jost and R. Hock, Thin Solid Films, 515 (2007) 5895. https://doi.org/10.1016/j.tsf.2006.12.090

Cited by

  1. Sputtering for Use as a Target by Spark Plasma Sintering vol.21, pp.2, 2014, https://doi.org/10.4150/KPMI.2014.21.2.137