• Title/Summary/Keyword: Powder removal

Search Result 311, Processing Time 0.028 seconds

Control of Algal Blooms in Eutrophic Water Using Porous Dolomite Granules

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Shin Haeng;Cheong, Sun Hee;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.108-113
    • /
    • 2017
  • The use of aluminum-based coagulants in water pretreatment is being carefully considered because aluminum exposure is a risk factor for the onset of Alzheimer's disease. Lightly burned-dolomite kiln dust (LB-DKD) was evaluated as an alternative coagulant because it contains high levels of the healthful minerals calcium and magnesium. An organic pore forming agent (OPFA) was incorporated to prepare porous granules after OPFA removal through a thermal decomposition process. A spray drying method was used to produce uniform and reproducible spherical granules with low density, since fine dolomite particles have irregular agglomeration behavior in the hydration reaction. The use of fine dolomite powder and different porosity granules led to a visible color change in raw algae (RA) containing water, from dark green to transparent colorlessness. Also, dolomite powders and granules exhibited a mean removal efficiency of 48.3% in total nitrogen (T-N), a gradual increase in the removal efficiency of total phosphorus (T-P) as granule porosity increased. We demonstrate that porous dolomite granules can improve the settling time and water quality in summer seasons for the emergent treatment of excessive algal blooms in eutrophic water.

Removal of Ammonia from Aqueous Solutions with Zeolite and Bentonite (제오라이트 및 벤토나이트에 의한 수용액중 암모니아의 제거)

  • 이화영;오종기;김성규;고현백
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.3-9
    • /
    • 2002
  • Relnoval of ammonia from aqueous solutions has been studied with zeolite and bentonite minerals. Zeolite and bentonite powder were supplied by a domestic company and used as delivered without further purification. The aqueous pH was found to increase by addition of zeolite or bentonite up to pH 8.5 from initial pH of 5.5∼5.7. From the C.E.C. measurement by ammonium acetate leaching method, the values of C.E.C. of zeolite and bentonite sample were observed to be 129.7 meq/100 gr and 65.1 meq/100 gr, respectively and Na+ ion accounted for the major part of total C.E.C. in both cases. In the removal of ammonia with zeolite and bentonite, physical adsorption of ammonium ion onto minerals was believed to contribute to the removal of it as well as the intrinsic cation exchange reaction. Finally, zeolite was found to be superior to bentonite in the removal of ammonia from aqueous solutions.

Fabrication of ZnS Powder by Glycothermal Method and Its Photocatalytic Properties (Glycothermal법에 의한 ZnS 분말 합성 및 광촉매 특성)

  • Park, Sang-Jun;Lim, Dae-Young;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.489-494
    • /
    • 2017
  • ZnS powder was synthesized using a relatively facile and convenient glycothermal method at various reaction temperatures. ZnS was successfully synthesized at temperatures as low as $125^{\circ}C$ using zinc acetate and thiourea as raw materials, and diethylene glycol as the solvent. No mineralizers or precipitation processes were used in the fabrication, which suggests that the spherical ZnS powders were directly prepared in the glycothermal method. The phase composition, morphology, and optical properties of the prepared ZnS powders were characterized using XRD, FE-SEM, and UV-vis measurements. The prepared ZnS powders had a zinc blende structure and showed average primary particles with diameters of approximately 20~30 nm, calculated from the XRD peak width. All of the powders consisted of aggregated secondary powders with spherical morphology and a size of approximately $0.1{\sim}0.5{\mu}m$; these powders contained many small primary nanopowders. The as-prepared ZnS exhibited strong photo absorption in the UV region, and a red-shift in the optical absorption spectra due to the improvement in powder size and crystallinity with increasing reaction temperature. The effects of the reaction temperature on the photocatalytic properties of the ZnS powders were investigated. The photocatalytic properties of the as-synthesized ZnS powders were evaluated according to the removal degree of methyl orange (MO) under UV irradiation (${\lambda}=365nm$). It was found that the ZnS powder prepared at above $175^{\circ}C$ exhibited the highest photocatalytic degradation, with nearly 95 % of MO decomposed through the mediation of photo-generated hydroxyl radicals after irradiation for 60 min. These results suggest that the ZnS powders could potentially be applicable as photocatalysts for the efficient degradation of organic pollutants.

Presence and Control of Coliform Bacteria in Kimchi (김치 발효중 대장균군의 소장과 억제에 관한 연구)

  • Chung, Chang-Ho;Kim, Youn-Soon;Yoo, Yang-Ja;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.999-1005
    • /
    • 1997
  • The consistant appearance of coliforms in fermenting kimchi was examined and measures of removing coliforms early in the fermentation were investigated. Allyl isothiocyanate $({\geq}50\;ppm)$, horseradish powder $({\geq}0.4%)$, and garlic juice $({\geq}2.0%)$ were effective in removal of coliforms early in kimchi fermentation. However, mustard powder and methyl methanethiosulfonate were not effective. Nisin, known as a promising agent for the prevention of kimchi over-acidification, allowed coliforms to survive in kimchi longer with only marginal extention of edible period. Individual kimchi ingredients such as Chinese cabbage, garlic, red pepper powder, ginger and green onion were all found to contain coliforms. Coliforms were not detected from garlics sold unpeeled and commercially prepared red pepper powder.

  • PDF

Mixed Nano Silica Colloidal Slurry for Reliability Improvement of Sapphire Wafer CMP Process (사파이어 웨이퍼 CMP 공정 신뢰성 향상을 위한 혼합 나노실리카 콜로이달 슬러리)

  • Chung, Chan Hong
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • A colloidal silica slurry has been manufactured by mixing nano silica powders having different grain size to improve the reliability of Sapphire wafer CMP process. The main reliability problem of CMP process such as the breaking of wafer can be prevented by reducing the size of particles in a slurry. While existing commercial colloidal silica slurries are usually made of single grain size silica powder of about 120nm, in the present study 40nm and 100nm silica powders are mixed to achieve a similar removal rate. The new colloidal silica slurry showed wafer removal rate of $3.04{\mu}m/120min$ while that of a commercial colloidal silica slurry was $3.03{\mu}m/120min$. The roughness was less than $4{\AA}$ and scratch was 0. It is also expected that the reduction of the size of nano silica particles can improve the dispersion stability and prolong the useful life of the slurry.

Selective colonization and removal of senescent flowers of zucchini squash by Trichoderma hrzianum YC459, a biocontrol agent for gray mold, Botrytis cinerea

  • Kim, Geun-Gon;Chung, Young-Ryun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.90.2-91
    • /
    • 2003
  • In commercial greenhouses, senescent flower petals or flowers of vegetables such as tomato, strawberry, hot pepper and zucchini squash were blighted to be removed from fruits within five days after spraying of Trichoderma harzianum YC459 (TORY), a biocontrol agent for the gray mold rot of vegetables caused by B. cinerea The mechanism for selective colonization of senescent floral tissues by T. harzianum YC459 was elucidated using fresh and senescent (Hays and 14days after flowering, respectively) floral tissues of zucchini squash (Cucurbita moschata Duchesne). The spores of T. hrzianum YC459 were produced more on agar and liquid culture media supplemented with 5% dry powder of senescent floral tissues than fresh tissues during 15days. Mycelial growth was also much better in the media with senescent tissues than with fresh tissues. Enzyme activities of amylase, polygalacturonase and cellulase in the liquid media which might be involved in the colonization of tissues by T. harzianum YC459 were compared. The activities of three enzymes were much higher in the media with senescent floral tissues than with fresh floral tissues reaching to the maximum during 9 to 12days of incubation. Based on the results, the removal of senescent floral tissues, a possible inoculum source of the pathogen, may be another mechanism for biocontrol of gray mold rot of vegetables by T. harzianum YC459.

  • PDF

Adsorption removal of p-xylene by organo-clays (유기점토를 이용한 p-자일렌 흡착 제거)

  • Cho, Yunchul;Kim, Taesung;Han, Sunkee;Lee, Chaeyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.747-756
    • /
    • 2012
  • The purpose of this study was to investigate adsorption characteristics of organo-clays for removal of p-xylene. As part of efforts to examine the adsorption capacities of some organo-clays for p-xylene, batch isotherm tests were carried out. Organo-clay minerals were synthesized under hydrothermal conditions using Na-montmorillonite as host clay and dimethyldioctadecylammonium (DMDA) bromide and benzyldimethyldodecylammonium (BDDA) chloride as organic surfactants, respectively. All synthetic organo-clay minerals were characterized by powder x-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX). The modification using dimethyldioctadecylammonium (DMDA) bromide showed the higher adsorption ability for p-xylene than benzyldimethyldodecylammonium (BDDA) chloride. On the other hand, the maximum adsorption capacity, $Q_{max}$ of DMDA modified montmorillonite estimated by Langmuir model was 27.0 mg/g, which was the higher value than other organo-clays.

Effect of Al2O3 Addition on SF6 Decomposition by Microwave Irradiation (마이크로파 조사에 의한 SF6 분해시 Al2O3 첨가의 영향)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Silicon carbide with aluminium oxide was used to remove the sulphur hexafluoride ($SF_6$) gas using microwave irradiation. The destruction and removal efficiencies (DREs) of $SF_6$ were studies as a function of various decomposition temperatures and microwave powers. The decomposition of $SF_6$ gas was analyzed using GC-TCD. XRD (X-ray powder diffraction) and XRF (X-ray Fluorescence Spectrometer) were used to characterize the properties of aluminum oxide. DREs of $SF_6$ were increased as the microwave powers were increased. Additive aluminium oxide on SiC increased the removal efficiencies and decreased the decomposition temperature. The XRD results show that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during $SF_6$ decomposition by microwave irradiation. It was found that the best material to control $SF_6$ was SiC with $Al_2O_3$ 30 wt% in consideration of microwave energy consumption and $SF_6$ decomposition rate.

Microwave Thermal Decomposition of CF4 using SiC-Al2O3 (SiC-Al2O3 촉매를 이용한 CF4의 마이크로파 열분해)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1097-1103
    • /
    • 2013
  • Tetrafluoromethane($CF_4$) have been widely used as etching and chemical vapor deposition gases for semiconductor manufacturing processes. $CF_4$ decomposition efficiency using microwave system was carried out as a function of the microwave power, the reaction temperature, and the quantity of $Al_2O_3$ addition. High reaction temperature and addition of $Al_2O_3$ increased the $CF_4$ removal efficiencies and the $CO_2/CF_4$ ratio. When the SA30 (SiC+30wt%$Al_2O_3$) and SA50 (SiC+50wt%$Al_2O_3$) were used, complete $CF_4$ removal was achieved at $1000^{\circ}C$. The $CF_4$ was reacted with $Al_2O_3$ and by-products such as $CO_2/CF_4$ and $AlF_3$ were produced. Significant amount of by-product such as $AlF_3$ was identified by X-ray powder diffraction analysis. It also showed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ after microwave thermal reaction.

Preparation of TiO2:Fe,V nanoparticles by flame spray pyrolysis and photocatalytic degradation of VOCs (화염분무열분해법을 이용한 TiO2:Fe,V 나노분말의 제조 및 VOCs 분해 특성)

  • Chang, Han Kwon;Jang, Hee Dong;Kim, Tae-Oh;Kim, Sun Kyung;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Fe- and V-doped titanium dioxide nanoparticles consisting of spherical primary nanoparticles were synthesized from a mixed liquid precursor by using the flame spray pyrolysis. The effects of dopant concentration on the powder properties such as morphology, crystal structure, and light adsorption were analyzed by TEM, XRD, and UV-Vis spectrophotometer, respectively. As the V/Ti molar ratio increased, pure anatase particles were synthesized. On the contrary, rutile phase particles were synthesized as the Fe/Ti ratio increased. Photocatalytic property of as-prepared $TiO_2:Fe,V$ nanoparticles was investigated by measuring the removal efficiency for volatile organic compounds (VOCs) under the irradiation of visible light. After 2 hrs under visible light, the removal efficiencies of benzene, p-xylene, ethylbenzene, and toluene were reached to 21.9%, 21.4%, 19.8% and 17.6% respectively.

  • PDF