• 제목/요약/키워드: Powder reaction

검색결과 1,635건 처리시간 0.034초

분무열분해공정에 의한 니켈 페라이트 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Ni-ferrite Powder by Spray Pyrolysis Process)

  • 유재근;서상기;박시현;한정수
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.202-209
    • /
    • 2004
  • In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80$0^{\circ}C$ to 110$0^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 $kg/cm^2, the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 $kg/cm^2 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.

침상구조의 루틸상 TiO2 초미분체를 이용한 광촉매 반응에 대한 연구 (Study on Photocatalytic Reaction Using Acicular TiO2 Rutile Powder)

  • 황두선;구숙경;김광수;민형섭;이은구;김선재
    • 한국재료학회지
    • /
    • 제12권8호
    • /
    • pp.641-649
    • /
    • 2002
  • The redox properties of a homogeneously-precipitated $TiO_2$ rutile powder with a BET surface area of ~$200 m^2$/g, consisting of an acicular primary particle, were characterized using photocatalytic reaction in aqueous 4-chlorophenol, Cu-EDTA and Pb-EDTA solutions under ultraviolet irradiation, compared to those of commercial P-25 X$200 m_2$ powder with a spherical primary particle as well as home-made anatase $TiO_2$ powder with ~$200 m^2$/g BET surface area. Here, the anatase powder also includes mainly the primary particles very similar to the acicular shapes of the rutile $TiO_2$ powder. The rutile powder showed the fastest decomposition rate and the largest amount in the photoredor, compared with the anatase or P-25 powder, while the anatase powder unexpectedly showed the slowest rate and the smallest amount in the same experiments regardless of almost the same surface area. From results, the excellent photoredox abilities of this rutile powder appears to be due to specific powder preparation method, like a homogeneous precipitation leading to direct crystallization from the solution, regardless of their crystalline structures even when having the similar particle shape and surface area.

Reaction flavor 기술을 이용한 구운 쇠고기향 개발 (Development of a Burnt Beef Flavor by Reaction Flavor Technology)

  • 김기원;백형희
    • 한국식품과학회지
    • /
    • 제35권6호
    • /
    • pp.1045-1052
    • /
    • 2003
  • HVP로부터 구운 쇠고기향를 제조하기 위하여 쇠고기향 생성에 중요하게 작용하는 반응들을 고려하여 전구물질을 탐색한 결과, 구운 소고기 향을 생성하는 전구물질조성으로 HVP, ribose, cysteine, furaneol, thiamin, methionine, 마늘분말 및 phospholipid를 선정 하였다. 선정된 전구물질조성을 고온 고압 반응기를 이용하여 구운 쇠고기향 생성에 영향을 주는 반응조건들을 알아본 결과, 최적 반응조건은 $130^{\circ}C$, 교반속도 100rpm 및 반응시간 1시간에 수분 7.5% 첨가시 좋은 구운 쇠고기 향이 생성되었다. Omission test에 의해 구운 쇠고기향 생성에 중요한 역할을 하는 전구물질을 선정한 결과 cysteine, furaneol, thiamin 및 마늘분말이었다. HVP 5% ribose, 5% methionine, 5% phospholipid를 기본 base로 하고, cysteine, furaneol, thiamin, 그리고 마늘분말을 독립변수로 하여 반응표면분석법을 행한 결과 전구물질의 최적조성은 7.7% cysteine, 7.3% furaneol, 2.1% thiamin 및 6.9% 마늘 분말로 나타났다.

펄스통전가열에 의한 텅스텐 탄화물의 제조 (Fabrication of tungsten carbide by pulsed electric current heating)

  • 홍성현;김현진
    • 한국입자에어로졸학회지
    • /
    • 제5권4호
    • /
    • pp.153-158
    • /
    • 2009
  • Tungsten carbide powder was fabricated with carbothermal reaction by pulsed electric current flowing in compact of tunsten oxide and carbon. The mixed powder of tunsten oxide and carbon was ball-milled into ultrafine powders. The mixed powder of tungsten oxide and carbon was put into carbon mold and heat-treated at $1050{\sim}1200^{\circ}C$ by pulsed electric current flowing. The formation of tungsten carbide powder could be achieved by heat treatment at $1200^{\circ}C$ for 10 minitues.

  • PDF

Development of Nano-sized WC Powder for Hardmetals

  • Yamamoto, Yoshiharu;Mizukami, Masahiko
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.342-343
    • /
    • 2006
  • In order to develop the nano-sized WC powder that improved the hardness of hardmetals, carbothermal reduction of WO3 by C was examined by using the thermogravimetric analysis. At the direct carburization reaction path of $WO_3{\rightarrow}WO_{2.72}{\rightarrow}WO_2{\rightarrow}W{\rightarrow}W_2C{\rightarrow}WC$, the nano-sized grain was generated at the reaction stage $WO_{2.72}$ to $WO_2$ and W. For trial production, the intermediate products which consists of metal and carbide phases obtained by the first heating has been carburized to the final WC powder. We succeeded in the development of the WC powder of about 70nm. In addition, the nano-sized WC powder in which the vanadium of the most effective grain growth inhibitor was uniformly dispersed was developed.

  • PDF

Fabrication of Nano-sized WC/Co Composite Powder by Direct Reduction and Carburization with Carbon

  • Lee, Dong-Ryoul;Lee, Wan-Jae
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.642-643
    • /
    • 2006
  • Direct reduction and carburization process was thought one of the best methods to make nano-sized WC powder. The oxide powders were mixed with graphite powder by ball milling in the compositions of WC-5,-10wt%Co. The mixture was heated at the temperatures of $600{\sim}800^{\circ}C$ for 5 hours in Ar. The reaction time of the reduction and carburization was decreased as heating temperatures and cobalt content increased. The mean size of WC/Co composite powders was about 260 nm after the reactions. And the mean size of WC grains in WC/Co composite powders was about 38 nm after the reaction at $800^{\circ}C$ for 5 hours.

  • PDF

Synthesis of the Ultrafine $BaTiO_3$ power by hydrothermal Process

  • Bae, Dong-Sik;Han, Kyong-Sop;Park, Sang-Heul
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 13th KACG Technical Meeting `97 Industrial Crystallization Symposium(ICS)-Doosan Resort, Chunchon, October 30-31, 1997
    • /
    • pp.87-89
    • /
    • 1997
  • The BaTiO$_3$ fine powder was prepared by hydrthermal method using titanium tetrahydoxide (Ti(OH)$_4$) and barium dihydroxide (Ba(OH)$_2$.8$H_2O$) as raw materials. The fine powder was obtained at temperatures as low as 160 to 185$^{\circ}C$. The properties of the BaTiO$_3$ powder were studied as a function of various parameters (reaction temperature, reaction time, Ba/Ti=ratio, etc). The average particle size of the BaTiO$_3$ increased with increasing reaction temperature. After hydrothermal treatment at 17$0^{\circ}C$ for 8 h, the average particle size of the BaTiO$_3$ powder was about 30 nm and the particle size distribution was narrow.

  • PDF

고에너지볼밀링을 이용한 MnFeP1-xAsx 나노분말의 합성 (Synthesis of MnFeP1-xAsx Nanocrystalline Powders by High-Energy Ball Milling)

  • 조영환
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.129-135
    • /
    • 2003
  • Nanocrystalline powders of $MnFeP_{1-x}As_x$(x=0.45-0.6) have been synthesized by mechanochemical reaction at room temperature using high-energy ball milling from mixtures of Mn, Fe, P, and As Powders. It has been found that a mechanically induced self-propagating reaction (MSR) occurs within 2 hours of milling and it produces very fine polycrystalline powder having a hexagonal $Fe_2P$ structure. Further milling up to 24 hours did not change the crystalline and average particle sizes or the phase composition of the milling product. When x is 0.65, no reaction among the reactants has been observed even after 24 hours of milling. As the P content decreases in $MnFeP_{1-x}As_x$, the incubation time for the MSR has increased and the lattice constants in both a and c axes have changed.

Manufacture of Ultra Fine CuO Powder from Waste Copper Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun;Ahn, Zou-Sam;Sohn, Jin-Gun
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.165-170
    • /
    • 2001
  • The main purpose of this study is to generate a fine copper oxide powder of high purity, with a compact structure and a uniform particle size by a spray pyrolysis process. The raw material is a waste copper chloride solution formed in the manufacturing process of Print Circuit Board (PCB). This study also examines the influences of various factors on the properties of the generated powder. These factors include the reaction temperature, the inflow speed of the raw material solution, the inflow speed of the air, the size of the nozzle tip, and the concentration of the raw material solution. It is discovered that, as the reaction temperature increases from 80$0^{\circ}C$ to 100$0^{\circ}C$ , the particle size of the generated powder increases accordingly, and that the structure of the powder becomes much more compact. When the reaction temperature is 100$0^{\circ}C$, the particle size of the generated powder increases as the concentration of copper in the raw material solution increases to 40g/l, decreases as the concentration increases up to 120g/l, and increases again as the concentration reaches 200g/1. In the case of a lower concentration of the raw material solution, the generated powder appears largely in the form of CuO. As the concentration increases, however, the powder appears largely in the form of CuCl. When the concentration of copper in the raw material solution is 120g/1, the particle size of the generated powder increases as the inflow speed of the raw material solution increases. When the concentration of copper in the raw material solution is 120g/1, there is no evident change in the particle size of the generated powder as the size of the nozzle tip and the air pressure increases. When the concentration is 40g/1, however, the particle size keeps increasing until the air pressure increases to 0.5kg/$\textrm{cm}^2$, but decreases remarkably as the air pressure exceeds 0.5kg/$\textrm{cm}^2$.

  • PDF

The Effect of Processing Variables and Composition on the Nitridation Behavior of Silicon Powder Compact

  • Park, Young-Jo;Lim, Hyung-Woo;Choi, Eugene;Kim, Hai-Doo
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.472-478
    • /
    • 2006
  • The effect of compositional and processing variables on a nitriding reaction of silicon powder compact and subsequent post sintering of RBSN (Reaction-Bonded Silicon Nitride) was investigated. The addition of a nitriding agent enhanced nitridation rate substantially at low temperatures, while the formation of a liquid phase between the nitriding agent and the sintering additives at a high temperature caused a negative catalyst effect resulting in a decreased nitridation rate. A liquid phase formed by solely an additive, however, was found to have no effect on nitridation for the additive amount used in this research. The original site of a decomposing pore former was loosely filled by a reaction product ($Si_3N_4$), which provided a specimen with nitriding gas passage. For SRBSN (Sintered RBSN) specimens of high porosity, only a marginal dimensional change was measured after post sintering. Its engineering implication for near-net shaping ability is discussed.