• Title/Summary/Keyword: Powder pressing

Search Result 389, Processing Time 0.022 seconds

A Densification Model for Mixed Metal Powder under Cold Coompaction (냉간압축하에서 혼합금속분말의 치밀화 모델)

  • 조진호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.112-118
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions and contact numbers of Cu powder new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densificatiojn of mixed powder under cold isostatic pressing and cold die compaction. finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

A Study on the Yield Criterion of Metal Powders (금속 분말의 항복조건에 관한 연구)

  • 박성준;한흥남;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.131-138
    • /
    • 1996
  • A new yield criterion for metal powder compaction based on continuum mechanics has been proposed. It includes three parameters to characterize the geometrical hardening of powder compact and strain hardening of incompressible metal matrix. The elasto-plastic finite element method to describe compaction of metal powders has been formulated using the new yield criterion. The values of parameters in the yield criterion can be determined using cold isostatic pressing(CIP). The finite element method can simulate compaction behavior of various copper powders.

  • PDF

Complex Shaped PM-parts by Warm Flow Compaction Process

  • Veltl, Georg;Petzoldt, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.203-204
    • /
    • 2006
  • There is an increasing demand for PM-processes with the capability to produce parts of higher complexity than with conventional press and sinter technology in high production numbers. Warm-flow-compaction (WFC) makes use of improved flowability of powders when blended in an appropriate ratio with fine powder fractions and lubricating binders. Here the process is shown with examples of PM-Steels. General features possible with the process like pressing of undercuts and threaded bores are shown.

  • PDF

Analysis of Densification Behavior of Nano Cu Powders during Cold Isostatic Pressing (나노 구리 분말의 냉간정수압 공정에 대한 치밀화 거동 해석)

  • 윤승채;김형섭;이창규
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.

A Finite Element Analysis for Densification Behavior of Mixed Metal Powder under Cold Compaction (냉간압축하에서 혼합 금속분말의 치밀화 거동에 관한 유한요소해석)

  • Cho, Jang-Hyug;Cho, Jin-Ho;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.393-398
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions originally proposed by Fleck-Gurson for pure powder, a new mixed yield functions In terms of volume fractions and contact numbers of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data. and with calculated results from the model of Kim et at. for densification of mixed powder under cold isostatic pressing and cold die compaction. Finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

Densification behavior and grain growth of zirconia powder compacts at high temperature (지르코니아 분말 성형체의 고온 치밀화 거동과 결정립 성장)

  • Kim, H.G;Kim, K.T
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1175-1187
    • /
    • 1997
  • Densification behavior and grain growth of zirconia powder compacts are investigated under high temperature. Experimental data are obtained for zirconia powder under pressureless sintering, sinter forging and hot isostatic pressing. The constitutive equations by Kwon et al. are used for diffusional creep and grain growth. The constitutive equations by McMeeking and co-workers are also included to study the effect of power-law creep. These constitutive equations are implemented into a finite element program (ABAQUS) to investigate the friction effect during sinter forging and the canning effect during hot isostatic pressing. The agreements between experimental data and finite element results are very good in pressureless sintering and hot isostatic pressing, but not as good in sinter forging.

Mechanical Properties of Carbon Nanotube/Cu Nanocomposites Produced by Powder Equal Channel Angular Pressing (분말 ECAP 공정으로 제조된 탄소나노튜브/Cu 나노복합재료의 기계적 성질)

  • Yoon, Seung-Chae;Jeong, Young-Gi;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.360-365
    • /
    • 2006
  • Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nano technologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (${\appros}\;several\;nm$) as well as their high Young's modulus (${\appros}1\;TPa$), tensile strength (${\appros}\;200\;GPa$) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. Although extensive researches have been performed on the electrical, mechanical and functional properties of CNTs, there are not many successful results on the mechanical properties of CNT dispersed nanocomposites. In this paper, we applied equal channel angular pressing for consolidation of CNT/Cu powder mixtures. We also investigated the hardness and microstructures of CNT/Cu nanocomposites used experimental for metal matrix composites.

Formation of $Fe_3AlC$ Base Alloy by Mechanical Alloying and Vacuum Hot Pressing

  • Isonishi, Kazuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1290-1291
    • /
    • 2006
  • Fabrication of $Fe_3AlC$ matrix in-situ composite, reinforced by a FeAl phase, was studied by using the powder metallurgical processing route. Especially, in order to disperse the second phase more finely, we chose the mechanical alloying process. We investigated the microstructural and mechanical properties of the consolidated material. After consolidation by vacuum hot pressing, the compact showed almost full density and consisted of a $Fe_3AlC$ matrix and FeAl second phase (average particle size was less than 1m). The compact showed HV746, which was higher than that of the arc melted $Fe_3AlC$ monolithic material, HV603.

  • PDF

Thermoelectric Properties of Half-Heusler ZrNiSn1-xSbx Synthesized by Mechanical Alloying Process and Vacuum Hot Pressing

  • Ur, Soon-Chul
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.401-405
    • /
    • 2011
  • Half-heusler phase ZrNiSn is one of the potential thermoelectric materials for high temperature application. In an attempt to investigate the effect of Sb doping on thermoelectric properties, half-heusler phase $ZrNiSn_{1-x}Sb_x$ ($0{\leq}x{\leq}0.08$) was synthesized by mechanical alloying of stoichiometric elemental powder compositions, and consolidated by vacuum hot pressing. Phase transformations during mechanical alloying and hot consolidation were investigated using XRD. Sb doped ZrNiSn was successfully produced in all doping ranges by vacuum hot pressing using as-milled powders without subsequent annealing. Thermoelectric properties as functions of temperature and Sb contents were evaluated for the hot pressed specimens. Sb doping up to x=0.04 in $ZrNiSn_{1-x}Sb_x$ was shown to be effective on thermoelectric properties and the figure of merit (ZT) was shown to reach to the maximum at x=0.02 in this study.