• Title/Summary/Keyword: Powder pressing

Search Result 389, Processing Time 0.03 seconds

Effect of Cobalt to Bronze Ratio on Transverse Rupture Strength of Diamond Segments

  • Unal, Rahmi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1146-1147
    • /
    • 2006
  • Diamond segments were fabricated by cold pressing and sintering under pressure at the temperature up to $750^{\circ}C$. Based on the results of this investigation, it can be concluded that the segments containing 39wt.% cobalt in the matrix material have the highest bending strength at a fracture probability of 50 % due to the weibull distribution method. According to the weibull statistics, it was also determined that the transverse rupture strength was the best for 39 wt.% cobalt ratio in the matrix material for the fracture probability when the other variables are the same.

  • PDF

Fabrication and Characterization of High Purity of Fine Alumina from Korean Alunite and Sulfate Salts (국산 명반석과 황산염으로부터 고순도의 미세한 알루미나의 제조 및 특성에 관한 연구)

  • 변수일;이수영;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 1979
  • High purity alumina has been extracted form low grade Korean alunite. Alunite ore was treated by 15% $NH_4OH$ solution, followed by 10% $H_2SO_4$ leaching and metallic impurities such as Fe and Ti were removed by solvent extraction method. Alumina prepared by the extraction process was 99.9% in purity. Hot Petroleum Drying Method has been employed for the preparation of uniformly fine alumina powder, using chemical reagent aluminum sulfate and ammonium aluminum sulfate extrated from Korea alunite. The sinterability of alumina powder prepared by Hot Petroleum Drying Method was shown to be improved in comparison with the one treated by other methods such as ball milling method, but dry pressing was difficult due to the agglomeration of calcined powder. The best slip of alumina powder prepared by Hot Petroleum Drying Method contained a lower soild content than the one treated by other methods. The alumina body formed by soild and drain casting with the former alumina powder showed a higher sintered density.

  • PDF

Effect of the Heat Treatment Temperature on the Compressive Strength of Coal Powder Compacts

  • Seo, Seung-Kuk;Roh, Jae-Seung
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.151-156
    • /
    • 2012
  • This study considered the effect of the heat treatment temperature on the compressive strength of coal powder compacts affected by density, porosity, and crystallinity. Coal powder compacts were made by pressing of milled coal powder and were heat treated at 200, 400, 600, 800, and $1000^{\circ}C$. The density and porosity of the heat treated specimens at each temperature were measured using the Archimedes method and changes in crystallinity were analyzed using Raman spectroscopy. Increases in compressive strength at $600^{\circ}C$ or higher temperatures were proportionally related to increases in the density and the degree of crystallinity.

Improved Consistency and Productivity by Aeration Filling Technology and High Performance Powder Mixes

  • Larsson, Mats;Solimanjad, Naghi;Dahlberg, Mikael;Takeda, Yoshinubu;Kondoh, Mikio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.742-743
    • /
    • 2006
  • Filling of the tool die directly influences dimensional tolerances and density variation. To minimize the variations in filling, both within different sections of the cavity and from part to part, are of great importance for produce high quality P/M parts. Filling of the tool die is also one of the limiting factors in the productivity in powder pressing. By using aeration filling in combination with bonded powder mixes, both weight scatter and productivity can be improved. In this presentation results are presented showing the benefit of using aeration filling for different types of powders

  • PDF

Study for the Development of Fe-NbC Composites by Advanced PM Techniques

  • Gordo, E.;Gomez, B.;Gonzalez, R.;Ruiz-Navas, E.M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.118-119
    • /
    • 2006
  • The development of Fe-based metal matrix composites (MMCs) with high content of hard phase has been approached by combining the use of advanced powder metallurgy techniques like high-energy milling (HEM), cold isostatic pressing (CIP) and vacuum sinterings. A 30% vol. of NbC particles was mixed with Fe powder by HEM in a planetary mill during 10h, characteristing the powder by the observation of morphology and microstructure by scanning electron microscopy (SEM). After of sintering process the variation of density, hardness,carbon content and the microstructural changes observed, permits to find the optimal conditions of processing. Afterwards, a heat treatment study was performed to study the hardenability of the composite.

  • PDF

Fabrication and Magnetic Properties of A New Fe-based Amorphous Compound Powder Cores

  • Xiangyue, Wang;Feng, Guo;Caowei, Lu;Zhichao, Lu;Deren, Li;Shaoxiong, Zhou
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.318-321
    • /
    • 2011
  • A new Fe-based amorphous compound powder was prepared from Fe-Si-B amorphous powder by crushing amorphous ribbons as the first magnetic component and Fe-Cr-Mo metallic glassy powder by water atomization as the second magnetic component. Subsequently by adding organic and inorganic binders to the compound powder and cold pressing, the new Fe-based amorphous compound powder cores were fabricated. This new Fe-based amorphous compound powder cores combine the superior DC-Bias properties and the excellent core loss. The core loss of 500 kW/$m^3$ at $B_m$ = 0.1T and f = 100 kHz was obtained When the mass ratio of FeSiB/FeCrMo equals 3:2, and meanwhile the DC-bias properties of the new Fe-based amorphous compound powder cores just decreased by 10% compared with that of the FeSiB powder cores. In addition, with the increasing of the content of the FeCrMo metallic glassy powder, the core loss tends to decrease.

Fabrication of Micro Component of Metallic Nano Powder Using Polymer Mold (폴리머 몰드를 이용한 금속 나노분말의 미세부품 제조)

  • Lee, Woo-Seok;Kim, Sang-Phil;Lee, Hye-Moon;Bae, Dong-Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.202-207
    • /
    • 2007
  • Novel polymer mold process for fabrication of microcomponents using metal nanopowders was developed and experimentally optimized. Polymer mold for forming green components was produced by using a hard master mold and polydimethylsiloxane (PDMS). In the preparation of metallic powder premix for the green components without any defect, 90 wt.% 17-4PH statinless steel nanopowders and 10 wt.% organic binder were mixed by a ball milling process. The green components with very clear gear shape were formed by filling the powder premix into the PDMS soft mold in surrounding at about $100^{\circ}C$. Cold isostatic pressing (CIP) was very potent process to decrease a porosity in the sintered microcomponent. The microgear fabricated by the improved process showed a good dimension tolerance of about 1.2%.

Rapid Heating Concepts in Sintering

  • German, Randall M.
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.85-99
    • /
    • 2013
  • Powder metallurgy applied rapid heating to sintering starting year 1900. Since 1970 the study has intensified. Now rapid sintering concepts embrace a spectrum of options ranging from dunk cycles to microwave, induction, exothermic, electric field, and spark approaches. Most of the efforts are targeting reduced microstructure coarsening during sintering, although reduced material decomposition is another common goal. The efforts are impressive for simple shapes and success metrics such a small grain size after densification. Several barriers need to be removed prior to application in powder metallurgy commercial sintering. Rapid heating research needs to focus on significant property gains, accurate product dimensions, and lower costs. So far each property gain obtained with rapid heating is matched by traditional sintering and composition changes. Several examples are cited to show the goals for the next round of innovations.

Consolidation Behavior of Ti-6Al-4V Powder by Spark Plasma Sintering (Spark plasma sintering에 의한 Ti-6Al-4V 합금분말의 성형성)

  • Kim, J.H.;Lee, J.K.;Kim, T.S.
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.32-37
    • /
    • 2007
  • Using spark plasma sintering process (SPS), Ti-6Al-4V alloy powders were successfully consolidated without any contamination happened due to reaction between the alloy powders and graphite mold. Variation of microstructure and mechanical properties were investigated as a function of SPS temperature and time. Compared with hot isostatic pressing (HIP), the sintering time and temperature could be lowered to be 10 min. and $900^{\circ}C$, respectively. At the SPS condition, UTS and elongation were about 890 MPa and 24%, respectively. Considering the density of 98.5% and elongation of 24%, further improving the tensile strength would obtain by increasing the SPS pressure.