• Title/Summary/Keyword: Powder coating

Search Result 772, Processing Time 0.025 seconds

Studies on the storage of fresh fruits and vegetables by plastic coating (1) on Rall's Janet Apple- (Plastic Coating에 의(依)한 청과물저장연구(靑果物貯藏硏究) (제1보(第1報)) -사과(국광(國光))에 대(對)하여-)

  • Park, Nou-Pung
    • Applied Biological Chemistry
    • /
    • v.12
    • /
    • pp.89-97
    • /
    • 1969
  • These studies were made on coating of fresh fruits and vegetables with PVC under view on preservation of fresh fruits and vegetables due to restrain water evaporation of them and control gas metabolisms. The results obtained, as selection of PVC materials availble for preservation of them, procedure of the coating, useful organic solvents, concentration of PVC solution and the time of dipping, and effects of the preservation of them, were summarized as follows: 1) PVC powder 222 and PVC powder 443 were surveyed as suitable materials for coating apple, and later was excellent in lustrous aspect. 2) The coating procedure which dipt into PVC solution was suitable to treat much within a short space of time, and using of ventillator accelerate rather evaporation of the organic solvent. 3) Aceton and methyethylketon as solvent of the PVC were, in purpose of storage only, avaible, while aceton was, in view ef taste, better. 4) 10% of the PVC solutions were better to preserve the freshness of apple and 5, 4, 1 and 0.5% of them in order were gradually decreased in preservability, and 15% of them as high concentration were looked like fermentation in one week after the coating. 5) The dipping time was also better n minute than 10 seconds in a preservation but 1-2 minutes could be applied owing to be not affected of the taste due to coating. 6) The freshness of treatment groups were extend about 48 days after coating in room temperature but control lost market value with 12 days. 7) Weight of control was decreased to 10-13% but treatment which was dipped into 10% of coating solution for one minute was decreased to 3.5-4.6% and treatment for four minutes was did to 2.9-3.0%. 8) Change in respiration was less is treatment groups than control in exhaustion of $CO_2$, and water soluble sugar, reduced sugar and pH were not changed almost due to coating. 9) Pannel discussion of the taste was indicated that control was better than treatments soon after coating, but treatments were rather than control last period of storage and treatment with aceton solvent specially was better than others.

  • PDF

Surface Properties, Friction, Wear Behaviors of the HOVF Coating of T800 Powder and Tensile Bond Strength of the Coating on Ti64

  • Cho, T.Y.;Yoon, J.H.;Joo, Y.K.;Cho, J.Y.;Zhang, S.H.;Kang, J.H.;Chun, H.G.;Kwon, S.C.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.11-12
    • /
    • 2008
  • Micron-sized Co-alloy T800 powder was coated on Inconel718 (IN718) using high velocity oxygen fuel (HVOF) thermal spraying by the optimal coating process (OCP) determined from the best surface hardness of 16 coatings prepared by Taguchi program. The surface hardness improved 140-160 % from 399 Hv of IN718 to 560-630 Hv by the coating. Porosity of the coating was 1.0-2.7 %, strongly depending on spray parameters. Both friction coefficients (FC) and wear traces (WT) of the coating were smaller than those of IN718 substrate at both $25^{\circ}C$ and $538^{\circ}C$. FC and WT of IN718 and coating decreased with increasing the surface temperature. Tensile bond strength (TBS) and fracture location (FL) of Ti64/T800 were 8,770 psi and near middle of T800 coating respectively. TBS and FL of Ti64/NiCr/T800 were 8,740 psi and near middle of T800 coating respectively. This showed that cohesion of T800 coating was 8,740-8,770 psi, and adhesion of T800 on Ti64 and NiCr was stronger than the cohesion of T800.

  • PDF

Fabrication of Fe Foam using Slurry Coating Process (슬러리 코팅 공정을 이용한 Fe 폼의 제조에 대한 연구)

  • Yun, Jung-Yeul;Park, Dahee;Yang, Sangsun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.97-101
    • /
    • 2017
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open pores which are penetrable pores are necessary for industrial applications such as in high temperature filters and as support for catalysts. In this study, Fe foam with greater than 90% porosity and 2-mm pore size was successfully fabricated using a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foam samples with different pore sizes and porosity. First, the slurry was prepared through the uniform mixing of powders, distilled water, and polyvinyl alcohol(PVA). The amount of slurry coated with the PU foam increased with increasing $Fe_2O_3$ mixing powder ratio, but the shrinkage and porosity of the Fe foams decreased, respectively, with increasing $Fe_2O_3$ mixing powder ratio.

Effect of Coating Method on Properties of Polymer-Modified Paste (폴리머 시멘트 페이스트의 특성에 미치는 도포방법의 영향)

  • Joo Myung Ki;Lee Youn Su;Kim Youn Hwan;Han Jung Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.803-806
    • /
    • 2005
  • The effect of coating method and binder content on the tensile adhesion strength, water absorption and cl- penetration depth of polymer-modified pastes using redispersible polymer powders and ceramic powder are examined. As a result, the tensile adhesion strength of the polymer-modified pastes tend to increase with increasing binder content and: number of coating. The water absorption and cl- penetration depth of the polymer-modified pastes tend to decrease with increasing binder content and number of coating.

  • PDF

A Study on the Functional Electroless Ni Plating for Controled Morphology on the CBN Powder (CBN분말상에 석출형상 제어를 위한 무전해 기능성 니켈합금도금에 관한 연구)

  • Chu, H.S.;Kim, D.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.312-324
    • /
    • 2008
  • In this study, the functional property as a super abrasive material was secured for CBN powder by the electroless Ni-P plating on the surface of the particle. The plating solution has been prepared to control the surface morphology by regulating surfactants and process conditions. The effects of processing parameters on the surface morphology of CBN powder was discussed. The results are summarized as follows; A stable plating tendency was achieved from 1 hour after quantitatively dropping reducing agent. It was observed that more than 50% of the weight gain was obtained by Ni-P coating on the surface of CBN super abrasive powder. The morphology of the Ni-P coating layer is consisted of botryoidal and spiky type and it could be controlled by regulating processing parameters. Superior characteristic in terms of surface morphology was found in the nonionic surfactant XL-80N. It was found that XL-80N considerably decreased surface tension of CBN powder and Ni-P alloy surface then enhance wettability as well as plating rate. Metal coated CBN powder as a raw material of resin bond wheel has been developed through this investigation.

Effect of Composition and Coating of Precursor Solution on a Micro Structural Properties of PZT Thick Films (PZT 후막의 미세 구조적 특성에 조성과 전구체 용액의 코팅이 미치는 영향)

  • Park, Sang-Man;Noh, Hyun-Ji;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1014-1019
    • /
    • 2006
  • The influence of the number of solution coatings on the densification of the PZT thick films was studied. PZT powder and PZT precursor solution was prepared by a sol-gel method and PZT thick films were fabricated by the screen-printing method on the alumina substrates. The powder and solution of composition were (A) PZT(80/20)/PZT(20/80), (B) PZT(70/30)/PZT(30/70) and (C) PZT(60/40)/PZT(40/60), (D) PZT(52/48)/PT. The coating and drying procedure was repeated 4 times. And then the PZT precursor solution was spin-coated on the PZT thick films. A concentration of a coating solution was 0.5 moth and the number of coating was repeated from 0 to 6. The porosity of the thick films was decreased with increasing the number of coatings and the PZT thick films with 6-times coated showed the dense microstructure and thickness of about $60{\mu}m$. A grain size was increased with increasing the coating number. All PZT thick films showed the typical XRD patterns of a typical perovskite polycrystalline structure. The relative dielectric constant of PZT thick films was improved 30-100% as the number of coatings.

Optimization of selective laser sintering process parameter for Fe-Ni-Cr coating fabrication (Fe-Ni-Cr 코팅층 형성을 위한 SLS 공정변수의 최적화)

  • Joo, B.D.;Jang, J.H.;Yim, H.S.;Son, Y.M.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.278-281
    • /
    • 2009
  • Selective laser sintering(SLS), a kind of rapid prototyping technology, can provide a process to form many types of coatings. Coated layers by selective laser melting are highly influenced by substrate, powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore an attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel has been performed by selective laser sintering. In this study, Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with Ar. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of coating layer was improved with fill spacing optimization or layer thickness decrease.

  • PDF

Studies of Physicochemical Properties of Baby Powder Developed from Rice-flour (쌀 분말을 이용한 유아용 파우더의 이화학적 특성 연구)

  • Han, Sang-Ik;Jang, Ki Chang;Seo, Woo Duck;Oh, Seong-Hwan;Ra, Ji-Eun;Song, Yu-Cheon;Lee, Jong-Hee;Kim, Byung-Joo;Nam, Min-Hee;Lee, Jin-Tae
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.879-885
    • /
    • 2013
  • Baby powder is an astringent powder used to prevent diaper rash. It also has other cosmetic uses. In general, it is composed of talc powder (talcum powder). Talc powder is harmful if inhaled because it can cause significant lung damage. With the aim of developing a new rice-based baby powder, three kinds of rice varieties were selected and pulverized. To determine the cost-effectiveness of the different states of rice powder, several milling processes were tried, and the powder characteristics of the resulting rice powder, such as particle size, biological activities, digitalized color value, and moisture content before and after coating treatment with essential oil and silicon oil, were examined. "Goami" showed good flour characteristics with respect to lightness (92.0, $L^*$[D65] value) and particle size ($8.9{\mu}m$). SEM analysis showed that the rice powder particles coated in the essential oil and silicon oil showed a smoother and rounder appearance than those of the talc powder. In addition, the average particle size was decreased by the essential oil and silicon oil coating. The silicon oil coating solved the problem of moisture absorption in rice flour. Rice flour properly coated with essential oil and silicon oil shows great potential as a new material source of powder.