• Title/Summary/Keyword: Powder characteristic

Search Result 425, Processing Time 0.03 seconds

Optimal Synthesis Conditions of Calcium Hydrogen Phosphate (인산 일수소칼슘의 최적합성조건)

  • Shin, Wha-Woo;Kim, Youn-Seol;Kim, Jun-Hea
    • YAKHAK HOEJI
    • /
    • v.42 no.2
    • /
    • pp.153-158
    • /
    • 1998
  • Calcium hydrogen phosphate was synthesized by reacting calcium chloride and sodium hydrogen phosphate solution in this study. It is well known that the particle size and yield o f calcium hydrogen phosphate produced is greatly affected by the synthetic conditions such as the reactant concentration, reaction temperature, reacting fine, mole ratio and drying temperature, etc. The purpose of this study is to investigate the optimum synthesis condition from the viewpoint of yield and sedimentation volume of the prepared calcium hydrogen phosphate powder according to a randomized complete block design proposed by G.E.P. Box and K.B. Wilson. It was found that the optimum synthetic conditions of calcium hydrogen phosphate were as follows: It was found that optirnum temperature range of reactant solutions was $28-38^{\circ}C$ and $32-42^{\circ}C$ respectively, on the viewpoint of yield and sedimentation volume. The optimum concentration range of reactant solutions was 5.5-10.0% and 6.9-7.4% respectively, on the viewpoint of yield and sedimentation volume. The optimum mole ratio of $CaCl_2$ to $Na_2HPO_4$ was in the range of 1.2-2.0 and the optimum reacting time range was 8.5-11.0 minutes. The optimum drying temperature range was $39-41^{\circ}C$ from the viewpoint of yield, but it was $39-43^{\circ}C$ on the basis of sedimentation volume. Crystallographic analysis to X-ray diffraction patterns of commercially available ecalcium hydrogen phosphate and calcium hydrogen phosphate samples prepared in this study suggested that all samples tested belonged to monoclinic crystal system characteristic of $CaHP0_4{\cdot}2H_20$ crystals.

  • PDF

Synthesis and Electrochemical Properties of LiFePO4 by Citrate Process (구연산염법을 이용한 LiFePO4 합성 및 전기화학특성에 관한 연구)

  • Kim, Soo-Min;Kim, Sang-Hun;Kim, Jin-Ho;Kim, Ung-Soo;Hwang, Hae-Jin;Cho, Woo-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.728-734
    • /
    • 2011
  • $LiFePO_4$ is a promising cathode material for secondary lithium batteries due to its high energy density, low cost and safety. $LiFePO_4$ was synthesized by the citrate process under reductive, neutral, and oxidative, atmospheres and the crystal structure was analyzed by X-ray powder diffraction. The samples synthesized under $N_2$ and $H_2$ atmosphere showed a single phase of a olivine structure, where the samples synthesized under $O_2$ atmosphere exhibited second phase of $Fe2O_3$. All the samples synthesized at 400, 600 and $800^{\circ}C$ under $N_2$ atmosphere presented a single phase of olivine. Residual organic material was observed for the sample synthesized at $400^{\circ}C$. There was nearly no intensity difference between the samples synthesized at $600^{\circ}C$ and $800^{\circ}C$. The electrochemical characteristic of the $LiFePO_4$ synthesized at $600^{\circ}C$ in the $N_2$ atmosphere was analyzed. The result exhibited an high discharge capacity of 160 mAh/g at the first cycle, and 155-160 mAh/g after 45 cycles.

Explosion Hazards of Aluminum Powders with the Variation of Mean Diameter (알루미늄 분진의 평균입경 변화에 따른 폭발위험성)

  • Han, Ou-Sup;Han, In-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2014
  • In this study, the explosion characteristic of aluminium powders have been investigated as a function of particle size using by a 20 L dust explosion apparatus (K$\ddot{u}$hner). The tested aluminium particle sizes were the volume mean diameter of 16, 33 and $88{\mu}m$. The lower explosion limit increases gradually with the increasing of dust particle diameter, respectively 40, 60, $125g/m^3$ in mean diameter of 16, 33 and $88{\mu}m$. Also the increase in particle size for each aluminum dusts was found to cause an decrease in explosion pressure and Kst of dust explosion index, and a increase in the lower explosion concentration. Research results may have important implications for aluminum powders utilization and safety operation.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

Flavor Components Generated from Thermally Processed Soybean Paste (Doenjang and Soondoenjang) Soups and Characteristics of Sensory Evaluation (된장찌개의 가열조리 시 생성되는 향기성분과 관능적 특성)

  • Joo, Kwang-Jee;Shin, Myo-Ran
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.202-210
    • /
    • 2004
  • Doenjang, traditional Korean soybean paste without soysauce and soondoenjang that was not isolated soysauce from soybean paste were thermally processed by the addition of dry anchovy, garlic, red pepper powder and green onion. The volatile flavor components generated from doenjang soup and soondoenjang soup were studied and compared with the change in the various flavors. It was confirmed that some difference of the flavor components was found in two type of soups. Doenjang soup contained a plenty of aldehydes and ketones that revealed the savory flavor. The major flavor components in the soondoenjang soup were sulfur containing compounds that appeared the highest ratio than any other types of flavors and 10 pyrazines. On the sensory evaluation, a great number of pyrazins may be considered as a characteristic of the savory flavor of soondoenjang soup, however, it was not give the reliable result. Stepwise multiple regression analysis of two type of soups indicated that aldehydes, alcohols, ketones were contributory flavor components for overall smell preference and quality preference.

Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup (전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석)

  • Kim Sung Wook;Han Sang Muk;Kang Su Tae;Kong Jeong Shick;Kang Jun Hyung;Jun Sang Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

Effect of Mean Diameter on the Explosion Characteristic of Magnesium Dusts (마그네슘의 폭발특성에 미치는 평균입경의 영향)

  • Han, Ou-Sup;Lee, Su-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.33-38
    • /
    • 2013
  • A study was carried out on the effect of particle size (mean diameter) on magnesium dust explosion. Experimental investigations were conducted in a 20-L explosion sphere, using 10 kJ chemical ignitors. Explosion tests were performed with three different dusts having mean diameter (38, 142, $567{\mu}m$) and the dust concentrations were up to $2250g/m^3$. The lower explosion limits(LEL) of magnesium dusts were about $30g/m^3$ at $38{\mu}m$ and $40g/m^3$ at $142{\mu}m$. LEL tended to increase with particle size and this means that the explosion probability of magnesium dust decreased with increase of particle size. The maximum explosion presssure ($P_m$) and $K_{st}$ (Explosion index) decreased with the increase of particle size. For magnesium powder of $567{\mu}m$, however, the explosive properties were not observed in the 5 kJ ignition energy.

Characterization studies of digital x-ray detector based on mercuric iodide (Mercuric iodide 기반의 디지털 X-선 검출기의 특성 연구)

  • Cho, Sung-Ho;Park, Ji-Koon;Choi, Jang-Yong;Suck, Dae-Woo;Cha, Byung-Yul;Nam, Sang-Hee;Lee, Byum-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.392-395
    • /
    • 2003
  • For the purpose of digital x-ray imaging, many materials such as $PbI_2$, $HgI_2$, TlBr, CdTe and CdZnTe have been under development for servaral years as direct converter layer. $Hgl_2$ film detector have recently been shown as one of the most promising semiconductor materials to be used as direct converters in x-ray digital radiography. This paper, the $HgI_2$ films are deposited on conductive-coated glass by screen printing, in which $HgI_2$ powder is embedded in a binder and solvent, and the slurry is used to coat the conductive-coated glass. We investigated electrical characteristic of the fabricated $HgI_2$ films. The x-ray response to radiological x-ray generator of 70Kvp using the current integration mode will be reported for screen printing films. These results indicate that $HgI_2$ detectors have high potential as new digital x-ray imaging devices for radiography.

  • PDF

Experiments on granular flow in a hexagonal silo: a design that minimizes dynamic stresses

  • Hernandez-Cordero, Juan;Zenit, R.;Geffroy, E.;Mena, B.;Huilgol, R.R.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.55-67
    • /
    • 2000
  • In this paper, an experimental study of the rheological behavior of granular flow in a new type of storage silo is presented. The main characteristic of the new design is a hexagonal shape chosen with the objective of minimizing the stresses applied to the stored grains, and to reduce grain damage during the filling and emptying processes. Measurements of stress distribution and flow patterns are shown for a variety of granular materials. Because of the design of the silo, the granular material adopts its natural rest angle at all times eliminating collisional stresses and impacts between grains. A homogeneous, low friction flow is naturally achieved which provides a controlled stress distribution throughout the silo during filling and emptying. Secondary dynamic stresses, which are responsible for wall failure in conventional silos of the vertical type, are completely eliminated. A comparison between the two geometries is presented with data obtained for these silos and a number of granular materials. The discharge pattern inhibits powder formation in the silo and the filling system virtually eliminates unwanted material packing. Finally, notwithstanding the rheological advantages of this new design, the hexagonal cells that constitute the silo have many other advantages, such as the possible use of solar energy to control the humidity inside them. The cell type design allows for versatile storage capabilities and the elevation above the ground provides unlimited transportation facilities during emptying.

  • PDF

A Study on the Characteristic of High Tc Oxide Superconductor, Bi-Pb-Sr-Ca-Cu-O System (Bi-Pb-Sr-Ca-Cu-O계 산화물 고온초전도체의 특성에 관한 연구)

  • Kim, Y.S.;Lee, M.S.;Lee, M.S.;Jin, Y.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.1
    • /
    • pp.13-18
    • /
    • 1991
  • The formation of high $T_c$ phase is very sluggish and c parameter of unit cell of high $T_c$ phase is about $37{\AA}$. High $T_c$ oxide superconductor with a $T_c$ above 100 K has been successfully prepared by solid state reaction method in BiSrCaCuO system by Pb adding. The microstructure related to the formation of the high $T_c$ phase has been investigated. As compared with YBCO compound, the formation reaction of the high $T_c$ requires long time heat treatment. It is due to the transformation from the low $T_c$ phase to high $T_c$ phase. The sintering just below the melting point of the calcined powder mixture is effective on the formation of the high $T_c$ phase in Pb-added BiSrCaCuO system. The growth of the high $T_c$ superconducting phase has a thin plate shape, which is characterized by the c parameter of $37{\AA}$. The formation of the high $T_c$ phases is delayed by the excessive addition of Pb. The lattice parameter(c) of the unit cell (both the low and high $T_c$ phases) is increased with increase of Pb.

  • PDF